A programmable modular robot for the synthesis of molecular machines

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chem Pub Date : 2025-03-31 DOI:10.1016/j.chempr.2025.102504
Robert Rauschen, Jean-François Ayme, Bartosz M. Matysiak, Dean Thomas, Leroy Cronin
{"title":"A programmable modular robot for the synthesis of molecular machines","authors":"Robert Rauschen, Jean-François Ayme, Bartosz M. Matysiak, Dean Thomas, Leroy Cronin","doi":"10.1016/j.chempr.2025.102504","DOIUrl":null,"url":null,"abstract":"The assembly of molecular nanomachines using atomically precise manipulations promises to enable nanotechnology with unprecedented architectural features and exquisite functional properties. However, this future is critically limited by the ability to autonomously manufacture nanomachines, with current efforts being heavily labor intensive. A system is needed to program and assemble matter under digital control, unifying molecular nanotechnology and macroscale chemical processes. Herein, we present a universal chemical robotic synthesis platform (Chemputer) that produces functional molecular machines. By integrating autonomous feedback through on-line NMR and liquid chromatography, a divergent four-step synthesis and purification of molecular rotaxane architectures are achieved. The synthetic sequence averaged 800 base steps over 60 h, affording products on an analytical scale for feasibility studies. While standardizing rotaxane synthesis enhances reliability and reproducibility, our workflow addresses two bottlenecks in autonomous synthesis: yield determination (via on-line <sup>1</sup>H NMR) and product purification via multiple column chromatography techniques (silica gel and size exclusion).","PeriodicalId":268,"journal":{"name":"Chem","volume":"15 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2025.102504","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The assembly of molecular nanomachines using atomically precise manipulations promises to enable nanotechnology with unprecedented architectural features and exquisite functional properties. However, this future is critically limited by the ability to autonomously manufacture nanomachines, with current efforts being heavily labor intensive. A system is needed to program and assemble matter under digital control, unifying molecular nanotechnology and macroscale chemical processes. Herein, we present a universal chemical robotic synthesis platform (Chemputer) that produces functional molecular machines. By integrating autonomous feedback through on-line NMR and liquid chromatography, a divergent four-step synthesis and purification of molecular rotaxane architectures are achieved. The synthetic sequence averaged 800 base steps over 60 h, affording products on an analytical scale for feasibility studies. While standardizing rotaxane synthesis enhances reliability and reproducibility, our workflow addresses two bottlenecks in autonomous synthesis: yield determination (via on-line 1H NMR) and product purification via multiple column chromatography techniques (silica gel and size exclusion).

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信