Senfeng Zhao , Qian Chen , Qimanguli Saiding , Soohwan An , Zhuoming Zhou , Na Kong , Yujing J. Heng , Reza Abdi , Wei Tao
{"title":"Live bacterial chemistry in biomedicine","authors":"Senfeng Zhao , Qian Chen , Qimanguli Saiding , Soohwan An , Zhuoming Zhou , Na Kong , Yujing J. Heng , Reza Abdi , Wei Tao","doi":"10.1016/j.chempr.2025.102436","DOIUrl":null,"url":null,"abstract":"<div><div>Live bacteria-based living materials have gained unprecedented attention in the biomedical landscape due to their natural host compatibility and unique dynamic accommodation. In recent decades, the strategic application of live bacteria has yielded revolutionary biomedical outcomes that standardized methods cannot achieve. However, misusing live bacteria may lead to infections, toxicity, or even biochemical dangers for patients. Fortunately, bacteria’s nature as single-celled organisms with relatively well-defined chemical compositions is advantageous. Leveraging our deep understanding of live bacterial chemistry and using chemical tools for management allows us to customize live bacterial behaviors and functions on demand. In this perspective, we will summarize the programmable chemical sites on live bacteria and the potential physical, chemical, or biological functions achievable through chemical engineering. We will focus on chemical approaches to live bacteria-based biomedicine to discuss and highlight how a more defined application of engineered live bacteria concepts could accelerate future clinical transformation.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"11 4","pages":"Article 102436"},"PeriodicalIF":19.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451929425000269","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Live bacteria-based living materials have gained unprecedented attention in the biomedical landscape due to their natural host compatibility and unique dynamic accommodation. In recent decades, the strategic application of live bacteria has yielded revolutionary biomedical outcomes that standardized methods cannot achieve. However, misusing live bacteria may lead to infections, toxicity, or even biochemical dangers for patients. Fortunately, bacteria’s nature as single-celled organisms with relatively well-defined chemical compositions is advantageous. Leveraging our deep understanding of live bacterial chemistry and using chemical tools for management allows us to customize live bacterial behaviors and functions on demand. In this perspective, we will summarize the programmable chemical sites on live bacteria and the potential physical, chemical, or biological functions achievable through chemical engineering. We will focus on chemical approaches to live bacteria-based biomedicine to discuss and highlight how a more defined application of engineered live bacteria concepts could accelerate future clinical transformation.
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.