Live bacterial chemistry in biomedicine

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chem Pub Date : 2025-04-10 DOI:10.1016/j.chempr.2025.102436
Senfeng Zhao , Qian Chen , Qimanguli Saiding , Soohwan An , Zhuoming Zhou , Na Kong , Yujing J. Heng , Reza Abdi , Wei Tao
{"title":"Live bacterial chemistry in biomedicine","authors":"Senfeng Zhao ,&nbsp;Qian Chen ,&nbsp;Qimanguli Saiding ,&nbsp;Soohwan An ,&nbsp;Zhuoming Zhou ,&nbsp;Na Kong ,&nbsp;Yujing J. Heng ,&nbsp;Reza Abdi ,&nbsp;Wei Tao","doi":"10.1016/j.chempr.2025.102436","DOIUrl":null,"url":null,"abstract":"<div><div>Live bacteria-based living materials have gained unprecedented attention in the biomedical landscape due to their natural host compatibility and unique dynamic accommodation. In recent decades, the strategic application of live bacteria has yielded revolutionary biomedical outcomes that standardized methods cannot achieve. However, misusing live bacteria may lead to infections, toxicity, or even biochemical dangers for patients. Fortunately, bacteria’s nature as single-celled organisms with relatively well-defined chemical compositions is advantageous. Leveraging our deep understanding of live bacterial chemistry and using chemical tools for management allows us to customize live bacterial behaviors and functions on demand. In this perspective, we will summarize the programmable chemical sites on live bacteria and the potential physical, chemical, or biological functions achievable through chemical engineering. We will focus on chemical approaches to live bacteria-based biomedicine to discuss and highlight how a more defined application of engineered live bacteria concepts could accelerate future clinical transformation.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"11 4","pages":"Article 102436"},"PeriodicalIF":19.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451929425000269","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Live bacteria-based living materials have gained unprecedented attention in the biomedical landscape due to their natural host compatibility and unique dynamic accommodation. In recent decades, the strategic application of live bacteria has yielded revolutionary biomedical outcomes that standardized methods cannot achieve. However, misusing live bacteria may lead to infections, toxicity, or even biochemical dangers for patients. Fortunately, bacteria’s nature as single-celled organisms with relatively well-defined chemical compositions is advantageous. Leveraging our deep understanding of live bacterial chemistry and using chemical tools for management allows us to customize live bacterial behaviors and functions on demand. In this perspective, we will summarize the programmable chemical sites on live bacteria and the potential physical, chemical, or biological functions achievable through chemical engineering. We will focus on chemical approaches to live bacteria-based biomedicine to discuss and highlight how a more defined application of engineered live bacteria concepts could accelerate future clinical transformation.

Abstract Image

Abstract Image

生物医学中的活细菌化学
以细菌为基础的活性材料由于其天然的宿主相容性和独特的动态调节,在生物医学领域受到了前所未有的关注。近几十年来,活细菌的战略性应用已经产生了标准化方法无法实现的革命性生物医学成果。然而,误用活菌可能导致患者感染、中毒甚至生化危险。幸运的是,细菌作为单细胞生物,具有相对明确的化学成分,这是有利的。利用我们对活细菌化学的深刻理解和使用化学工具进行管理,使我们能够根据需要定制活细菌的行为和功能。从这个角度来看,我们将总结活细菌的可编程化学位点以及通过化学工程可以实现的潜在物理,化学或生物功能。我们将重点讨论基于活细菌的生物医学的化学方法,并强调如何更明确地应用工程活细菌概念来加速未来的临床转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信