{"title":"Novel mixotrophic denitrification biofilter for efficient nitrate removal using dual electron donors of polycaprolactone and thiosulfate.","authors":"Ruikang Wang, Wei Zeng, Haohao Miao, Qingteng Gong, Yongzhen Peng","doi":"10.1016/j.biortech.2024.131836","DOIUrl":"10.1016/j.biortech.2024.131836","url":null,"abstract":"<p><p>A novel mixotrophic denitrification biofilter for nitrate removal using polycaprolactone and thiosulfate (MD-PT) as electron donors was investigated. MD-PT achieved high nitrate removal efficiency of approximately 99.8 %. The nitrate removal rates of MD-PT reached 1820 g N/m<sup>3</sup>/d, which was 304 g N/m<sup>3</sup>/d higher than that of autotrophic denitrification biofilter using thiosulfate (AD-T). Autotrophic and heterotrophic denitrification pathways in MD-PT were responsible for 67.6-94.5 % and 4.7-32.4 % of the nitrate removal, respectively. The production of SO<sub>4</sub><sup>2-</sup> in MD-PT was lower than that in AD-T, and the effluent pH was maintained at approximately 7.3 without acid-base neutralization. The abundance of key genes involved in carbon, nitrogen, and sulfur transformation was enhanced, which improved the nitrate removal of MD-PT. Alicycliphilus and Simplicispira related to organic compounds degradation were enriched after the addition of polycaprolactone. This research provided new insights into mixotrophic denitrification systems.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"131836"},"PeriodicalIF":9.7,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xuejiao Qi, Xuan Jia, Mingxiao Li, Meiying Ye, Yufang Wei, Fanhua Meng, Shanfei Fu, Beidou Xi
{"title":"Enhancing CO<sub>2</sub>-reduction methanogenesis in microbial electrosynthesis: Role of oxygen-containing groups on carbon-based cathodes.","authors":"Xuejiao Qi, Xuan Jia, Mingxiao Li, Meiying Ye, Yufang Wei, Fanhua Meng, Shanfei Fu, Beidou Xi","doi":"10.1016/j.biortech.2024.131830","DOIUrl":"10.1016/j.biortech.2024.131830","url":null,"abstract":"<p><p>Microbial electrosynthesis is a promising technology that recovers energy from wastewater while converting CO<sub>2</sub> into CH<sub>4</sub>. Constructing a biocathode with both strong H<sub>2</sub>-mediated and direct electron transfer capacities is crucial for efficient startup and long-term stable CH<sub>4</sub> production. This study found that introducing carboxyl groups onto the cathode effectively enhanced both electron transfer pathways, improving the reduction rate and coulombic efficiency of CH<sub>4</sub> production and increasing the CH<sub>4</sub> yield by 2-3 times. Carboxyl groups decreased the overpotential for H<sub>2</sub> evolution and increased current density, thereby enhancing H<sub>2</sub>-mediated electron transfer. Additionally, carboxyl groups increased the relative abundance of Methanosaeta by 3%-10%, doubled the protein content in extracellular polymeric substances, and boosted the expression of cytochrome c-related genes, thereby enhancing direct electron transfer capacity. These findings present a novel and efficient approach for constructing a stable, high-performance biocathode, contributing to energy recovery and CO<sub>2</sub> fixation.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"131830"},"PeriodicalIF":9.7,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of carbon/nitrogen ratio on sequencing batch biofilm reactors initiated with different seed sludges for treating actual mariculture effluents.","authors":"Xiao-Yan Fan, Shi-Long Zhou, Yanling Yang, Shen-Bin Cao, Yue Niu, Meng-Yuan Zheng, Jun-Ru Zhao","doi":"10.1016/j.biortech.2024.131838","DOIUrl":"10.1016/j.biortech.2024.131838","url":null,"abstract":"<p><p>The impact of carbon/nitrogen (C/N) ratio on sequencing batch biofilm reactor (SBBR) initiated with different seed sludges for treating actual mariculture effluent was explored. Increasing the C/N ratio significantly enhanced the nitrogen removal efficiency, achieving average removal efficiency of 95% for ammonia nitrogen and 73% for total nitrogen at ratio of 30, while the impact of seed sludge was minimal. High C/N ratio promoted the secretion of tightly bound extracellular polymeric substances (TB-EPS), which showed significant correlation with nitrogen removal. Interactions between bacteria and archaea were enhanced and conditionally rare or abundant taxa were the keystone taxa. High C/N ratio inhibited the relative abundance of ammonia-oxidizing archaea (Candidatus_Nitrosopumilus) and bacteria (Nitrosomonas), but promoted the heterotrophic nitrification-aerobic denitrification bacteria (Halomonas). The expression of nitrogen removal functional genes significantly correlated with functional genera. This study emphasized the crucial role of high C/N ratios in biological nitrogen removal from actual mariculture effluent.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"131838"},"PeriodicalIF":9.7,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Asimina Tsirigka, Amalia Aggeli, Eleni Theodosiou, Antonios M Makris, Anastasios J Karabelas, Sotiris I Patsios
{"title":"Model-based study of Yarrowia lipolytica cultivation on crude glycerol under different fermentation modes: Development of a membrane bioreactor process.","authors":"Asimina Tsirigka, Amalia Aggeli, Eleni Theodosiou, Antonios M Makris, Anastasios J Karabelas, Sotiris I Patsios","doi":"10.1016/j.biortech.2024.131773","DOIUrl":"10.1016/j.biortech.2024.131773","url":null,"abstract":"<p><p>Batch fermentations of the wild type Yarrowia lipolytica MUCL 28849 were performed in a bench-top bioreactor to assess crucial operating conditions. A setup of carbon to nitrogen (mol/mol) ratio equal to 34, pH = 6.0 and 52 g/L of crude glycerol showed increased lipid production and complete glycerol consumption at t = 24 h, thus, selected for further process improvement. Α semi-continuous process was implemented, where a pH drop to 4.0 at 24 h, interrupted citric acid secretion without affecting lipid production. An in-situ membrane module was employed for membrane bioreactor fermentations, where yeast cells were successfully retained with minimum fouling. The membrane bioreactor fed-batch process, resulted in a high-cell-density culture reaching 49.8 g/L of dry biomass and 4.9 g/L of lipids. An unstructured model was developed and successfully simulated operation under all fermentation modes, distinguishing diverse physiological shifts.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"131773"},"PeriodicalIF":9.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
João P C Moreira, Lucília Domingues, Joana I Alves
{"title":"Metabolic Versatility of acetogens in syngas Fermentation: Responding to varying CO availability.","authors":"João P C Moreira, Lucília Domingues, Joana I Alves","doi":"10.1016/j.biortech.2024.131823","DOIUrl":"10.1016/j.biortech.2024.131823","url":null,"abstract":"<p><p>Syngas fermentation using acetogenic bacteria offers a promising route for sustainable chemical production. However, gas-liquid mass transfer limitations and efficient co-utilization of CO and H<sub>2</sub> pose significant challenges. This study investigated the kinetics of syngas conversion to acetate by Acetobacterium wieringae and Clostridium species in batch conditions under varying initial CO partial pressures (19 - 110 kPa). A. wieringae strains, exhibited superior growth in all gas compositions, with a maximum growth rate of 0.104 h<sup>-1</sup>. The distinct CO, H<sub>2</sub>, and CO<sub>2</sub> consumption patterns revealed metabolic flexibility and adaptation to varying syngas compositions. Notably, A. wieringae strains and C. autoethanogenum achieved complete CO and H<sub>2</sub> conversion, with C. autoethanogenum also exhibiting net CO<sub>2</sub> uptake. These findings provide valuable insights into the distinct metabolic capabilities of these acetogens and contribute to the development of efficient and sustainable syngas fermentation processes.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"131823"},"PeriodicalIF":9.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Achieving efficient autotrophic nitrogen removal in anaerobic membrane bioreactor plus membrane aerated biofilm reactor by regulating nutrient ratios","authors":"Yu-Lin Han, Ling-Dong Shi, He-Ping Zhao","doi":"10.1016/j.biortech.2024.131832","DOIUrl":"10.1016/j.biortech.2024.131832","url":null,"abstract":"<div><div>It is feasible to integrate an anaerobic membrane bioreactor with a membrane aerated biofilm reactor to efficiently implement the sulfate reduction, simultaneous nitrification and autotrophic denitrification process. However, the effect of parameters on nutrient removal and environmental impacts of the process are unclear. In this study, the reactor performance was mainly influenced by the chemical oxygen demand to sulfate (COD/S) ratio and the ammonium to sulfate (N/S) ratio in long-term operation. Significant models were developed to optimize the two factors using the response surface methodology. Under optimal conditions (COD/S ratio of 2.5 and N/S ratio of 0.3), the system could remove above 86 % COD, 99 % ammonium, and 92 % total inorganic nitrogen. Moreover, this process could reduce energy consumption by 30 % and global warming potential by 50 % compared with traditional anaerobic/oxic activated sludge process. These findings provide guidance for the application of this technology in sulfate-containing municipal sewage treatment.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"416 ","pages":"Article 131832"},"PeriodicalIF":9.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Runda Du , Koichi Ando , Ruiping Liu , Liangwei Deng , Wenguo Wang , Yu-You Li
{"title":"CO2 removal from biogas improved stable treatment of low-alkalinity municipal wastewater using anaerobic membrane bioreactor","authors":"Runda Du , Koichi Ando , Ruiping Liu , Liangwei Deng , Wenguo Wang , Yu-You Li","doi":"10.1016/j.biortech.2024.131821","DOIUrl":"10.1016/j.biortech.2024.131821","url":null,"abstract":"<div><div>This study addressed a less-reported issue: the insufficient alkalinity encountered when anaerobic membrane bioreactors (AnMBRs) are used to treat municipal wastewater (MWW). In the present study, a 20-L AnMBR was initiated at an MWW treatment plant. During the initial startup, a continuous decrease in pH was observed. Through the analyses of the balance between HCO<sub>3</sub><sup>–</sup>/CO<sub>2</sub> in the biogas and alkalinity in the reactor, the cause of pH instability was determined to be that the alkalinity could not balance the acidity induced by the continuous dissolution of CO<sub>2</sub> from biogas in the liquid phase. Therefore, this study employed the in-situ removal of CO<sub>2</sub> from biogas using soda lime to reduce the CO<sub>2</sub> partial pressure, thereby achieving stable control of the pH in the reactor. This study provides valuable experience and technical support for anaerobic processes for treating low-alkalinity MWW in the future applications.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"416 ","pages":"Article 131821"},"PeriodicalIF":9.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zihao Qiao , Zezhi Chen , Huijuan Gong , Xiaofeng Guo , Huiqiang Yu , Lu Chen
{"title":"Enhancement of anaerobic digestion by adding elemental sulfur","authors":"Zihao Qiao , Zezhi Chen , Huijuan Gong , Xiaofeng Guo , Huiqiang Yu , Lu Chen","doi":"10.1016/j.biortech.2024.131820","DOIUrl":"10.1016/j.biortech.2024.131820","url":null,"abstract":"<div><div>In this study, a new approach to enhance methane (CH<sub>4</sub>) production from organic substrates in anaerobic digestion (AD) has been discovered. That is, the addition of elemental sulfur (S<sup>0</sup>) particles into the AD system promotes the synergistic growth of elemental sulfur disproportionation bacteria, acidogenic bacteria and methanogenic archaea, thus facilitating hydrolysis, acidogenesis and methanogenesis. The efficacy of this AD enhancement pathway was confirmed in AD experiments with glucose as a model organic substrate. The results demonstrated that CH<sub>4</sub> production in the AD system increased considerably with S<sup>0</sup> dosages ranging from 20 mg/L to 300 mg/L. Two gas production peaks appeared at dosages of 20 mg/L and 180 mg/L, where the total CH<sub>4</sub> production increased by 2.1 times and 2.5 times, respectively compared with the control group. However, inhibitory effect was observed for S<sup>0</sup> dosages above 300 mg/L. The chemical states of S, the microbial community and the abundance of key functional enzymes in the AD system were analyzed. The results showed that S<sup>0</sup> addition increased the relative abundance of <em>Dethiobacteraceae</em>, <em>Caldatribacterium</em>, <em>Anaerolineaceae</em>, <em>Methanobacterium</em> and <em>Methanosaeta</em> and considerably increased the abundance of key functional enzymes, such as dehydrogenase, D-glucosidic glucosidase, pyruvate synthase and acetyl-CoA deacetylase. The enrichment of these microorganisms and functional enzymes was strongly positively correlated with the production of volatile fatty acids and CH<sub>4</sub>, demonstrating that S<sup>0</sup> addition effectively enhances methanogenesis during AD.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"416 ","pages":"Article 131820"},"PeriodicalIF":9.7,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of cellulolytic nitrogen-fixing composite inoculants on humification pathways and nitrogen cycling in kitchen waste composting.","authors":"Haimin Li, Changqing Liu, Ji-Qin Ni, Guihua Zhuo, Yuhui Li, Yuyi Zheng, Guangyin Zhen","doi":"10.1016/j.biortech.2024.131819","DOIUrl":"10.1016/j.biortech.2024.131819","url":null,"abstract":"<p><p>Low humification and nitrogen loss pose substantial challenges to the resource utilization in kitchen waste composting. This study investigated the effects of brown-rot fungi (BRF), cellulolytic nitrogen fixing bacteria (CNFB), and their composite microbial inoculants (CMI) during composting. Results indicated that microbial inoculants extended the thermophilic phase and enhanced cellulose degradation. Compared with the control, the degree of polymerization (HA/FA) in BRF, CNFB, and CMI was 2.28, 1.85, and 2.68 times higher, respectively, while increasing total nitrogen by 11.15%, 15.50%, and 19.73%. BRF and CMI primarily enhanced the Maillard humification pathway, while CNFB promoted the polyphenol humification pathway. Additionally, BRF enhanced nitrification and reduced denitrification, whereas CNFB and CMI improved nitrification, nitrogen fixation, and ammonification while reducing denitrification. Overall, BRF primarily promoted humification, while CNFB excelled in nitrogen retention. The CMI achieved optimal humification and nitrogen retention, indicating a potential sustainable solution for kitchen waste composting.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"131819"},"PeriodicalIF":9.7,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuai Guo, Feng Li, Jun Wang, Hantao Zhou, Ziyi Yuan, Renjing Yang, Hongwei Ke, Haifeng Chen, Chunhui Wang, Minggang Cai
{"title":"Two-stage carbon sequestration by Haematococcus pluvialis: Integrated research from small-scale to pilot-scale cultivation and data quality monitoring.","authors":"Shuai Guo, Feng Li, Jun Wang, Hantao Zhou, Ziyi Yuan, Renjing Yang, Hongwei Ke, Haifeng Chen, Chunhui Wang, Minggang Cai","doi":"10.1016/j.biortech.2024.131828","DOIUrl":"10.1016/j.biortech.2024.131828","url":null,"abstract":"<p><p>A novel two-stage carbon sequestration strategy (3 % and 10 % CO<sub>2</sub>) was developed and its feasibility was comprehensively demonstrated by multiple methods (pilot-scale cultivation, kinetics, economics and carbon fixation analysis). It was also a safe, efficient and low-cost harvesting strategy. At the end of the culture, astaxanthin production and content increased 2.3 and 2.2 times, respectively. Sedimentation rate (SR) was introduced for the first time to evaluate microalgae culture methods. The SR reached 82.2 % after 2 h of standing. Pilot-scale cultivation was achieved outdoors, with the optimal photobioreactor being a 40 L tubular photobioreactor (T-PBRs), which individually achieved 3.1 g/L and 2.3 % biomass and astaxanthin content. The maximum rate of carbon sequestration (227.9 mg/L/d) was observed in 40 L T-PBRs. The cost of producing 1 kg of astaxanthin-enriched Haematococcus pluvialis (H. pluvialis) was only 17.5 USD. This study brings new perspectives to carbon sequestration and the development of astaxanthin markets.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"131828"},"PeriodicalIF":9.7,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}