Fengting Qu , Li Zhao , Yinan Cao , Taha Ahmed Mohamed , Zimin Wei
{"title":"微生物介导的Fenton系统对秸秆堆肥过程中木质素转化的协同强化机制","authors":"Fengting Qu , Li Zhao , Yinan Cao , Taha Ahmed Mohamed , Zimin Wei","doi":"10.1016/j.biortech.2025.132981","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the synergistic strengthening mechanism of a microbial-mediated Fenton system in lignin depolymerization during composting. The Fenton system was constructed using hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) produced by lignin-degrading microorganisms along with Fe(Ⅱ). The simultaneous inoculation of bacteria and fungi resulted in optimal enzyme activities related to lignocellulose degradation and lignin degradation rates. Moreover, the addition of 0.5% FeSO<sub>4</sub> further optimized hydroxyl radical (<strong>·</strong>OH) production. Therefore, four treatments were set: CK (control), BHF (bacterial fungi synchronized inoculation), Fe (FeSO<sub>4</sub>), and BHF-Fe (bacterial fungi synchronized inoculation + FeSO<sub>4</sub>). BHF-Fe synergistically drove the Fe(Ⅱ)/Fe(Ⅲ) redox cycle and maintained reactive oxygen species ROS, (superoxide anion, H<sub>2</sub>O<sub>2</sub> and <strong>·</strong>OH) generation. BHF-Fe showed a 22.58% greater lignin loss rate compared to the CK. The correlations between ROS and lignin loss rate were enhanced. Additionally, lignin peroxidase, as an extracellular enzyme, relies on H<sub>2</sub>O<sub>2</sub> for its action on lignin. The activities of laccase and lignin peroxidase were significantly correlated. Lignin decomposition was accelerated through the upregulation of key degrading enzyme genes (<em>Lac</em>, <em>LiP</em>, and <em>MnP</em>). The Fenton system showed attenuated pH dependence relative to conventional systems despite pH and Fe (II) effects on ROS. The BHF-Fe achieves efficient lignin degradation through a synergistic mechanism that integrates Fenton reactions, ROS, biocatalytic enzymatic oxidation and microenvironment compensation. This research offers theoretical and technical backing for developing agricultural waste resource recycling and composting technology.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"436 ","pages":"Article 132981"},"PeriodicalIF":9.7000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic strengthening mechanism of microbial-mediated Fenton system on lignin depolymerization during rice straw composting\",\"authors\":\"Fengting Qu , Li Zhao , Yinan Cao , Taha Ahmed Mohamed , Zimin Wei\",\"doi\":\"10.1016/j.biortech.2025.132981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigated the synergistic strengthening mechanism of a microbial-mediated Fenton system in lignin depolymerization during composting. The Fenton system was constructed using hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) produced by lignin-degrading microorganisms along with Fe(Ⅱ). The simultaneous inoculation of bacteria and fungi resulted in optimal enzyme activities related to lignocellulose degradation and lignin degradation rates. Moreover, the addition of 0.5% FeSO<sub>4</sub> further optimized hydroxyl radical (<strong>·</strong>OH) production. Therefore, four treatments were set: CK (control), BHF (bacterial fungi synchronized inoculation), Fe (FeSO<sub>4</sub>), and BHF-Fe (bacterial fungi synchronized inoculation + FeSO<sub>4</sub>). BHF-Fe synergistically drove the Fe(Ⅱ)/Fe(Ⅲ) redox cycle and maintained reactive oxygen species ROS, (superoxide anion, H<sub>2</sub>O<sub>2</sub> and <strong>·</strong>OH) generation. BHF-Fe showed a 22.58% greater lignin loss rate compared to the CK. The correlations between ROS and lignin loss rate were enhanced. Additionally, lignin peroxidase, as an extracellular enzyme, relies on H<sub>2</sub>O<sub>2</sub> for its action on lignin. The activities of laccase and lignin peroxidase were significantly correlated. Lignin decomposition was accelerated through the upregulation of key degrading enzyme genes (<em>Lac</em>, <em>LiP</em>, and <em>MnP</em>). The Fenton system showed attenuated pH dependence relative to conventional systems despite pH and Fe (II) effects on ROS. The BHF-Fe achieves efficient lignin degradation through a synergistic mechanism that integrates Fenton reactions, ROS, biocatalytic enzymatic oxidation and microenvironment compensation. This research offers theoretical and technical backing for developing agricultural waste resource recycling and composting technology.</div></div>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\"436 \",\"pages\":\"Article 132981\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960852425009472\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852425009472","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Synergistic strengthening mechanism of microbial-mediated Fenton system on lignin depolymerization during rice straw composting
This study investigated the synergistic strengthening mechanism of a microbial-mediated Fenton system in lignin depolymerization during composting. The Fenton system was constructed using hydrogen peroxide (H2O2) produced by lignin-degrading microorganisms along with Fe(Ⅱ). The simultaneous inoculation of bacteria and fungi resulted in optimal enzyme activities related to lignocellulose degradation and lignin degradation rates. Moreover, the addition of 0.5% FeSO4 further optimized hydroxyl radical (·OH) production. Therefore, four treatments were set: CK (control), BHF (bacterial fungi synchronized inoculation), Fe (FeSO4), and BHF-Fe (bacterial fungi synchronized inoculation + FeSO4). BHF-Fe synergistically drove the Fe(Ⅱ)/Fe(Ⅲ) redox cycle and maintained reactive oxygen species ROS, (superoxide anion, H2O2 and ·OH) generation. BHF-Fe showed a 22.58% greater lignin loss rate compared to the CK. The correlations between ROS and lignin loss rate were enhanced. Additionally, lignin peroxidase, as an extracellular enzyme, relies on H2O2 for its action on lignin. The activities of laccase and lignin peroxidase were significantly correlated. Lignin decomposition was accelerated through the upregulation of key degrading enzyme genes (Lac, LiP, and MnP). The Fenton system showed attenuated pH dependence relative to conventional systems despite pH and Fe (II) effects on ROS. The BHF-Fe achieves efficient lignin degradation through a synergistic mechanism that integrates Fenton reactions, ROS, biocatalytic enzymatic oxidation and microenvironment compensation. This research offers theoretical and technical backing for developing agricultural waste resource recycling and composting technology.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.