Bioresource Technology最新文献

筛选
英文 中文
Long-chain fatty acids as sole carbon source in polyhydroxyalkanoates production by Cupriavidus necator H16. 长链脂肪酸是坏死葡萄球菌 H16 产生多羟基烷酸的唯一碳源。
IF 9.7 1区 环境科学与生态学
Bioresource Technology Pub Date : 2024-11-18 DOI: 10.1016/j.biortech.2024.131846
Ridella Florencia, Marcet Ismael, Rendueles Manuel, Díaz Mario
{"title":"Long-chain fatty acids as sole carbon source in polyhydroxyalkanoates production by Cupriavidus necator H16.","authors":"Ridella Florencia, Marcet Ismael, Rendueles Manuel, Díaz Mario","doi":"10.1016/j.biortech.2024.131846","DOIUrl":"https://doi.org/10.1016/j.biortech.2024.131846","url":null,"abstract":"<p><p>Polyhydroxyalkanoates (PHA) are promising eco-friendly alternatives to petrochemical plastics. This study investigated the impact of the main fatty acids present in waste and fresh oils -palmitic, stearic, oleic, and linoleic acid-on PHA production using Cupriavidus necator H16, focusing on production yield, polymer composition, thermal properties, and microbial viability. Experiments were conducted with low (5 g/L) and high (15 g/L) carbon content for 168 h. Oleic acid was the most effective carbon source, yielding higher PHA production rates, especially noticeable at higher concentrations. The monomer composition and thermal properties of PHAs varied with the type and concentration of fatty acid used. Stearic acid produced PHAs with more 3-hydroxyvalerate and medium-chain length monomers. Microbial viability was consistent across all conditions, except for linoleic acid, which had a detrimental effect. These findings provide key insights into optimizing fatty acid selection to enhance PHA production and tailor polymer properties for industrial applications.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"131846"},"PeriodicalIF":9.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coupling Thiosulfate-Driven denitrification and anammox to remove nitrogen from actual wastewater. 将硫代硫酸盐驱动的反硝化和厌氧反应结合起来,去除实际废水中的氮。
IF 9.7 1区 环境科学与生态学
Bioresource Technology Pub Date : 2024-11-17 DOI: 10.1016/j.biortech.2024.131840
Suqin Wang, Ying Yuan, Feng Liu, Rundong Liu, Xuezhi Zhang, Yibing Jiang
{"title":"Coupling Thiosulfate-Driven denitrification and anammox to remove nitrogen from actual wastewater.","authors":"Suqin Wang, Ying Yuan, Feng Liu, Rundong Liu, Xuezhi Zhang, Yibing Jiang","doi":"10.1016/j.biortech.2024.131840","DOIUrl":"https://doi.org/10.1016/j.biortech.2024.131840","url":null,"abstract":"<p><p>A coupled thiosulfate-driven denitrification and anammox (TDDA) process was established to remove nitrogen from wastewater. It was optimized in an up-flow anaerobic sludge blanket reactor using synthetic wastewater, and its reliability was then verified with actual wastewater. The results demonstrated that nitrate, nitrite, and ammonium could be synergistically removed, and the highest total nitrogen removal efficiency reached 97.8% at a loading of 1.39 kgN/(m<sup>3</sup>·d). Anammox bacteria, primarily Candidatus_Brocadia, were the main contributors to nitrogen removal, while sulfur-oxidizing bacteria such as Thiobacillus and Rhodanobacter played a supportive role. By optimizing substrate conditions to enhance the anammox process, the coupled system attained higher abundances of functional genes such as napA, nirS, hzs, soxXA, and soxYZ, along with the corresponding microbial species. The data suggested that microbial cross-feeding and self-adaptation strategies were key to efficient nitrogen removal by TDDA.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"131840"},"PeriodicalIF":9.7,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nadh-dependent CO2 reductase on graphite for capacitive electrocatalytic interfacing mediated by solid-binding peptide. 由固体结合肽介导的石墨上 Nadh 依赖性二氧化碳还原酶电容电催化界面。
IF 9.7 1区 环境科学与生态学
Bioresource Technology Pub Date : 2024-11-16 DOI: 10.1016/j.biortech.2024.131841
J Shanthi Sravan, Hyeryeong Lee, Yuna Bang, In Seop Chang
{"title":"Nadh-dependent CO<sub>2</sub> reductase on graphite for capacitive electrocatalytic interfacing mediated by solid-binding peptide.","authors":"J Shanthi Sravan, Hyeryeong Lee, Yuna Bang, In Seop Chang","doi":"10.1016/j.biortech.2024.131841","DOIUrl":"10.1016/j.biortech.2024.131841","url":null,"abstract":"<p><p>NAD<sup>+</sup>/NADH-dependent CO<sub>2</sub> reductase (CR) adapted from Candida boidinii (PDB ID: 5DNA) was introduced with a non-native graphite-specific peptide (Gr; IMVTESSDYSSY) as molecular binder to modify the native enzyme (CR-WT) with peptide insertion at N, C and NC terminus (CR-GrN, CR-GrC and CR-GrNC) to assess the influence of site-specific fusion on electrode binding. Graphite surface-binding activity relative to the electrode topography was evaluated for both native and synthetic CRs to establish the enzyme-electrode interfacing potentiality for efficient electron channelling. Impact of site-specific peptide fusion and amino-acids positioning was assessed for the active site availability/binding and adsorption/desorption ability towards efficient CO<sub>2</sub>-based redox catalysis. Solid-binding peptide and graphite surface interactive ability on direct electron transfer was studied with structural, enzymatic and electrochemical characterizations towards efficient CO<sub>2</sub> electrosynthesis. Overall, enzymatic CO<sub>2</sub> reduction to formate based on interactive ability of enzyme-electrode complex with peptide modifications and graphite surface towards possibility of bioelectronics upscaling was depicted.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"131841"},"PeriodicalIF":9.7,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of three novel dimethyl disulfide degrading bacteria and their potential degradation pathways. 三种新型二甲基二硫降解菌及其潜在降解途径的特征。
IF 9.7 1区 环境科学与生态学
Bioresource Technology Pub Date : 2024-11-16 DOI: 10.1016/j.biortech.2024.131833
Xianyun Zheng, Yuyu Li, JingChao Xu, Quanxi Zhang, Yuexia Zhang
{"title":"Characterization of three novel dimethyl disulfide degrading bacteria and their potential degradation pathways.","authors":"Xianyun Zheng, Yuyu Li, JingChao Xu, Quanxi Zhang, Yuexia Zhang","doi":"10.1016/j.biortech.2024.131833","DOIUrl":"10.1016/j.biortech.2024.131833","url":null,"abstract":"<p><p>Dimethyl disulfide (DMDS) is an odor compound characterized by the lowest olfactory threshold and high toxicity. It is indispensable to explore the bacteria with high resistance and degradation efficiency to DMDS. Acinetobacter lwoffii, Pseudomonas mendocina, and Myroides odoratus were isolated from kitchen waste. After 6 days of individual treatment, the removal rates were 34.22 %, 40.95 %, and 41.94 % respectively. The DMDS metabolic pathways based on metagenomic assays were discovered to be incomplete due to the insufficient annotation of some key genes in the current database. Following 3 days of treatment with bacterial consortia at ratios of 5:1 for A. lwoffii C2/ M. odoratus C7 and 1:1:1 for the three strains achieved 100 % DMDS removal. Additionally, the consortia reduced hydrogen sulfide (H<sub>2</sub>S) and dimethyl sulfide (DMS).This discovery broadens the spectrum of bacteria exhibiting high tolerance and efficient degradation of DMDS, with significant implications for DMDS removal and odor treatment.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"131833"},"PeriodicalIF":9.7,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards valorization of glycerol and molasses: Carbon-based catalysts from molasses for the synthesis of acetins. 实现甘油和糖蜜的价值化:利用糖蜜中的碳基催化剂合成乙炔。
IF 9.7 1区 环境科学与生态学
Bioresource Technology Pub Date : 2024-11-16 DOI: 10.1016/j.biortech.2024.131834
Anna Malaika, Katarzyna Morawa Eblagon, Nikola Matuszek, M Fernando R Pereira, Mieczysław Kozłowski
{"title":"Towards valorization of glycerol and molasses: Carbon-based catalysts from molasses for the synthesis of acetins.","authors":"Anna Malaika, Katarzyna Morawa Eblagon, Nikola Matuszek, M Fernando R Pereira, Mieczysław Kozłowski","doi":"10.1016/j.biortech.2024.131834","DOIUrl":"10.1016/j.biortech.2024.131834","url":null,"abstract":"<p><p>Crude sugarcane molasses (SCM) was successfully applied for the first time as a bio-feedstock for producing biochar catalysts for glycerol upgrading. Preparation methods were developed, including partial or hydrothermal carbonization (abbr. PC and HTC) and chemical activation. After functionalization with -SO<sub>3</sub>H groups, the catalysts were tested for the esterification of glycerol to acetins. The materials varied in their textural and chemical features, particularly in the -SO<sub>3</sub>H content, giving the single-step PC method a distinct advantage. The best catalyst yielded approximately 74 % of di- and tri-acetins with 97 % glycerol conversion within only 2 h of the reaction and demonstrated great stability over three consecutive cycles. The formation of the desired TA product was correlated with the concentration of -SO<sub>3</sub>H groups. Despite being non-porous, the most active PC catalyst possessed a compact structure with a high abundance and easy accessibility of -SO<sub>3</sub>H, COOH, and -OH groups on its surface.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"131834"},"PeriodicalIF":9.7,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-step biocatalytic conversion of post-consumer polyethylene terephthalate into value-added products facilitated by genetic and bioprocess engineering. 利用基因工程和生物工艺工程,将消费后聚对苯二甲酸乙二醇酯分两步生物催化转化为高附加值产品。
IF 9.7 1区 环境科学与生态学
Bioresource Technology Pub Date : 2024-11-16 DOI: 10.1016/j.biortech.2024.131837
Gina Welsing, Birger Wolter, Greta E K Kleinert, Frederike Göttsch, Werner Besenmatter, Rui Xue, Alessandra Mauri, Dominik Steffens, Sebastian Köbbing, Weiliang Dong, Min Jiang, Uwe T Bornscheuer, Ren Wei, Till Tiso, Lars M Blank
{"title":"Two-step biocatalytic conversion of post-consumer polyethylene terephthalate into value-added products facilitated by genetic and bioprocess engineering.","authors":"Gina Welsing, Birger Wolter, Greta E K Kleinert, Frederike Göttsch, Werner Besenmatter, Rui Xue, Alessandra Mauri, Dominik Steffens, Sebastian Köbbing, Weiliang Dong, Min Jiang, Uwe T Bornscheuer, Ren Wei, Till Tiso, Lars M Blank","doi":"10.1016/j.biortech.2024.131837","DOIUrl":"10.1016/j.biortech.2024.131837","url":null,"abstract":"<p><p>Solving the plastic crisis requires high recycling quotas and technologies that allow open loop recycling. Here a biological plastic valorization approach consisting of tandem enzymatic hydrolysis and monomer conversion of post-consumer polyethylene terephthalate into value-added products is presented. Hydrolysates obtained from enzymatic degradation of pre-treated post-consumer polyethylene terephthalate bottles in a stirred-tank reactor served as the carbon source for a batch fermentation with an engineered Pseudomonas putida strain to produce 90mg/L of the biopolymer cyanophycin. Through fed-batch operation, the fermentation could be intensified to 1.4 g/L cyanophycin. Additionally, the upcycling of polyethylene terephthalate monomers to the biosurfactants (hydroxyalkanoyloxy)alkanoates and rhamnolipids is presented. These biodegradable products hold significant potential for applications in areas such as detergents, building blocks for novel polymers, and tissue engineering. In summary, the presented bio-valorization process underscores that addressing challenges like the plastic crisis requires an interdisciplinary approach.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"131837"},"PeriodicalIF":9.7,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Virus-bacterium interaction involved in element cycles in biological treatment of coking wastewater. 焦化废水生物处理中涉及元素循环的病毒-细菌相互作用。
IF 9.7 1区 环境科学与生态学
Bioresource Technology Pub Date : 2024-11-16 DOI: 10.1016/j.biortech.2024.131839
Zhijie Tan, Wenli Chen, Xinyi Wei, Zhaoji Qiu, Weixiong Zhuang, Baoshan Zhang, Junting Xie, Yuexia Lin, Yuan Ren, Sergei Preis, Chaohai Wei, Shuang Zhu
{"title":"Virus-bacterium interaction involved in element cycles in biological treatment of coking wastewater.","authors":"Zhijie Tan, Wenli Chen, Xinyi Wei, Zhaoji Qiu, Weixiong Zhuang, Baoshan Zhang, Junting Xie, Yuexia Lin, Yuan Ren, Sergei Preis, Chaohai Wei, Shuang Zhu","doi":"10.1016/j.biortech.2024.131839","DOIUrl":"10.1016/j.biortech.2024.131839","url":null,"abstract":"<p><p>Although prokaryotic microbes in coking wastewater (CWW) treatment have been comprehensively studied, the ecological functions of viruses remain unclear. A full-scale CWW biological treatment AOHO combination was studied for the virus-bacterium interactions involved in element cycles by metaviromics, metagenomics and physicochemical characteristics. Results showed the unique viromic profile with Cirlivirales and Petitvirales as the dominant viruses infecting functional bacteria hosts. The auxiliary metabolic genes (AMGs) focused on element cycles, including metabolisms of carbon (fadA), nitrogen (glnA), sulfur (mddA and cysK) and phosphorus (phoH). Other AMGs were involved in toxic tolerance of hosts, improving their cell membrane and wall robustness, antioxidant, DNA repair and cobalamin biosynthesis. Vice versa, the bloomed host provided fitness advantages for viruses. Dissolved oxygen was found to be the key factor shaping the distributions of viral community and AMGs. Summarizing, the study exposed the mutual virus-bacterium interaction in the AOHO combination providing stable treatment efficiency.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"131839"},"PeriodicalIF":9.7,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elucidating synergistic effects during co-pyrolysis of plastics and paper in municipal solid waste: Thermal behavior and product characteristics. 阐明城市固体废物中塑料和纸张共热解过程中的协同效应:热行为和产品特性
IF 9.7 1区 环境科学与生态学
Bioresource Technology Pub Date : 2024-11-16 DOI: 10.1016/j.biortech.2024.131831
Zichao Hu, Longfei Tang, Peipei Gao, Bin Wang, Chang Zhang, Yue Sheng, Weitong Pan, Lu Ding, Xueli Chen, Fuchen Wang
{"title":"Elucidating synergistic effects during co-pyrolysis of plastics and paper in municipal solid waste: Thermal behavior and product characteristics.","authors":"Zichao Hu, Longfei Tang, Peipei Gao, Bin Wang, Chang Zhang, Yue Sheng, Weitong Pan, Lu Ding, Xueli Chen, Fuchen Wang","doi":"10.1016/j.biortech.2024.131831","DOIUrl":"10.1016/j.biortech.2024.131831","url":null,"abstract":"<p><p>Plastics and paper are common components of municipal solid waste (MSW), making an in-depth understanding of their interactions essential for MSW thermal conversion. In this study, the co-pyrolysis behavior of plastic and paper was investigated. Firstly, the thermal decomposition characteristics were analyzed. Secondly, the pyrolytic behavior was elucidated in a fixed-bed reactor. Thirdly, the impact of plastic melting on co-pyrolysis was clarified. Results indicated that the thermal decomposition was accelerated between 250 °C and 283 °C, while temperatures above 400 °C resulted in inhibition. During fixed-bed pyrolysis, char yields (70.7-16.9 %) were increased by 4.0 %-12.7 %. This increase was mainly due to plastic melting, which contributed 8.6 % and increased aliphatic carbon content. Besides, PVC and PET exhibited a broader melting range > 500 °C. Bio-oil yields (25.5-70.6 %) were reduced by 3.4 %-12.4 %, primarily affecting aliphatic compositions. Gas yields (3.8-6.5 %) were reduced < 400 °C but increased with temperature, involving primarily H<sub>2</sub>, CH<sub>4</sub>, C<sub>2</sub>H<sub>4</sub>, and C<sub>2</sub>H<sub>6</sub>.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"131831"},"PeriodicalIF":9.7,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeted volatile fatty acid production based on lactate platform in mixed culture fermentation: Insights into carbon conversion and microbial metabolic traits. 混合培养发酵中基于乳酸盐平台的定向挥发性脂肪酸生产:洞察碳转化和微生物代谢特征。
IF 9.7 1区 环境科学与生态学
Bioresource Technology Pub Date : 2024-11-16 DOI: 10.1016/j.biortech.2024.131835
Jun Yin, Jianyu Jin, Jing Wang, Hongwei Fang, Xiaoqin Yu, Jie He, Ting Chen
{"title":"Targeted volatile fatty acid production based on lactate platform in mixed culture fermentation: Insights into carbon conversion and microbial metabolic traits.","authors":"Jun Yin, Jianyu Jin, Jing Wang, Hongwei Fang, Xiaoqin Yu, Jie He, Ting Chen","doi":"10.1016/j.biortech.2024.131835","DOIUrl":"10.1016/j.biortech.2024.131835","url":null,"abstract":"<p><p>In this study, the effects of fermentation pH and redox potential on the performance of the lactate platform were comprehensively evaluated. The results indicated that the type of acidogenic fermentation was influenced by redox potential, while pH was correlated with volatile fatty acid yield. The highest propionate yield was achieved under anaerobic conditions at a pH of9, with the dominant genus Serpentinicella producing propionate through the acrylate pathway. The highest acetate yield was produced under facultative conditions at a pH of 6. This production was primarily facilitated by the dominant genera unclassified_f__Enterobacteriaceae and Desulfovibrio, which exhibited significant upregulation of the expression of related genes. Furthermore, ecological processes were employed to establish the relationship between environmental factors and microbial communities. This study emphasized the process of converting lactate into volatile fatty acid, providing a theoretical basis for future strategies aimed at regulating targeted acid production.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"131835"},"PeriodicalIF":9.7,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mesophilic versus thermophilic digestion of sludge in anaerobic membrane bioreactors. 厌氧膜生物反应器中污泥的嗜中与嗜热消化。
IF 9.7 1区 环境科学与生态学
Bioresource Technology Pub Date : 2024-11-16 DOI: 10.1016/j.biortech.2024.131822
Amr Mustafa Abdelrahman, Saba Aghdam Tabar, Busra Cicekalan, Safak Basa, Gulin Ucas, Huseyin Guven, Hale Ozgun, Izzet Ozturk, Ismail Koyuncu, Jules B van Lier, Eveline I P Volcke, Mustafa Evren Ersahin
{"title":"Mesophilic versus thermophilic digestion of sludge in anaerobic membrane bioreactors.","authors":"Amr Mustafa Abdelrahman, Saba Aghdam Tabar, Busra Cicekalan, Safak Basa, Gulin Ucas, Huseyin Guven, Hale Ozgun, Izzet Ozturk, Ismail Koyuncu, Jules B van Lier, Eveline I P Volcke, Mustafa Evren Ersahin","doi":"10.1016/j.biortech.2024.131822","DOIUrl":"10.1016/j.biortech.2024.131822","url":null,"abstract":"<p><p>Energy-efficient wastewater treatment plants (WWTPs) utilize systems like high-rate activated sludge (A-stage) system to redirect organics from wastewater are redirected into energy-rich sludge (A-sludge). Anaerobic membrane bioreactors (AnMBRs) offer lower footprint and higher effluent quality compared to conventional digesters. In this study, the biological treatment and the filtration performances of AnMBRs for A-sludge digestion under mesophilic and thermophilic conditions were comparatively evaluated through lab-scale experiments, mass balancing and dynamic modeling. Under thermophilic conditions, a higher COD fraction of the influent sludge was converted into methane gas than under mesophilic conditions (65% versus 57%). The energy balance indicated that the surplus energy recovery under thermophilic conditions was less than the additional energy required for heating the AnMBR, resulting in a more than three-fold higher net energy recovery under mesophilic conditions. Therefore, operating an AnMBR for sludge digestion under mesophilic conditions has a higher potential to improve the energy balance in WWTPs.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"131822"},"PeriodicalIF":9.7,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信