{"title":"Impact of microbial entrapment on sulfate-reducing bacteria performance and stability with temperature disturbances.","authors":"Xinting Yin, Nicholas Gurieff, Adrian Oehmen","doi":"10.1016/j.biortech.2025.133110","DOIUrl":null,"url":null,"abstract":"<p><p>Sulfate-reducing bacteria (SRB) can treat Acid and Metalliferous Drainage (AMD); however, process stability is challenging. This study evaluated microbial entrapment technology as an alternative solution by entrapping SRB in a porous hydrogel matrix, creating a stable microenvironment, while allowing diffusion of nutrients and gases. Two sequencing batch reactors (SBRs) were operated over 210 days: one with entrapped SRB (ESRB) and the other with non-entrapped SRB. The ESRB system exhibited greater sulfate reduction efficiency and operational resilience. It maintained rates of 0.71 ± 0.06 and 0.86 ± 0.05 g SO<sub>4</sub><sup>2-</sup>/L/day during two 25-day operational periods with temperature drops from 24 °C to 15 °C. The non-entrapped SRB system dropped to 0.00 ± 0.00 and 0.12 ± 0.03 g SO<sub>4</sub><sup>2-</sup>/L/day, respectively. Microbial community analysis revealed an increased proportion of SRB in the ESRB system. Compression tests and OD<sub>600</sub> confirmed bead integrity and biomass retention. This study supports the applicability of ESRB for AMD treatment.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"133110"},"PeriodicalIF":9.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2025.133110","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Sulfate-reducing bacteria (SRB) can treat Acid and Metalliferous Drainage (AMD); however, process stability is challenging. This study evaluated microbial entrapment technology as an alternative solution by entrapping SRB in a porous hydrogel matrix, creating a stable microenvironment, while allowing diffusion of nutrients and gases. Two sequencing batch reactors (SBRs) were operated over 210 days: one with entrapped SRB (ESRB) and the other with non-entrapped SRB. The ESRB system exhibited greater sulfate reduction efficiency and operational resilience. It maintained rates of 0.71 ± 0.06 and 0.86 ± 0.05 g SO42-/L/day during two 25-day operational periods with temperature drops from 24 °C to 15 °C. The non-entrapped SRB system dropped to 0.00 ± 0.00 and 0.12 ± 0.03 g SO42-/L/day, respectively. Microbial community analysis revealed an increased proportion of SRB in the ESRB system. Compression tests and OD600 confirmed bead integrity and biomass retention. This study supports the applicability of ESRB for AMD treatment.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.