A novel cascade utilization of Camellia oleifera shell waste for co-production of xylo-oligosaccharides and high-performance hard carbon: processes and mechanisms.
Meng Li, Yangyang Chen, Yan Qing, Ming Liu, Yiqiang Wu, Lei Li
{"title":"A novel cascade utilization of Camellia oleifera shell waste for co-production of xylo-oligosaccharides and high-performance hard carbon: processes and mechanisms.","authors":"Meng Li, Yangyang Chen, Yan Qing, Ming Liu, Yiqiang Wu, Lei Li","doi":"10.1016/j.biortech.2025.133101","DOIUrl":null,"url":null,"abstract":"<p><p>Camellia oleifera shell (COS), a lignin- and hemicellulose-rich cultivation byproduct, offers significant potential for resource extraction. In this study, we developed an integrated biorefinery approach using mild metal chloride-catalyzed hydrothermal pretreatment to vaporize COS waste. Under optimized conditions (0.03 M AlCl<sub>3</sub>, 170 °C, 60 min), hemicellulose-rich COS was selectively depolymerized into xylo-oligosaccharides (XOS) with a yield of 49.8 %. This efficient Lewis acid-catalyzed method produced high XOS yields and cellulose- and lignin-enriched solid residues. Compared to untreated samples, these residues, with reduced hemicellulose content, yielded hard carbon with increased interlayer spacing and closed pore structures, exhibiting superior sodium storage ability. This approach contrasts with traditional enzymatic hydrolysis and fermentation pathways. The hard carbon anode was incorporated into sodium-ion batteries, demonstrating practical feasibility with an initial reversible capacity (IRC) of 348 mAh g<sup>-1</sup>, an initial coulombic efficiency (ICE) of 70.5 %, and capacity retention of 91.7 % after 100 cycles. This dual-product approach maximizes COS utilization and synergizes renewable chemical production with advanced energy storage, highlighting the unique advantages of our approach to XOS synthesis and material optimization, showcasing a clear advantage over existing single-product pathways.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"133101"},"PeriodicalIF":9.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2025.133101","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Camellia oleifera shell (COS), a lignin- and hemicellulose-rich cultivation byproduct, offers significant potential for resource extraction. In this study, we developed an integrated biorefinery approach using mild metal chloride-catalyzed hydrothermal pretreatment to vaporize COS waste. Under optimized conditions (0.03 M AlCl3, 170 °C, 60 min), hemicellulose-rich COS was selectively depolymerized into xylo-oligosaccharides (XOS) with a yield of 49.8 %. This efficient Lewis acid-catalyzed method produced high XOS yields and cellulose- and lignin-enriched solid residues. Compared to untreated samples, these residues, with reduced hemicellulose content, yielded hard carbon with increased interlayer spacing and closed pore structures, exhibiting superior sodium storage ability. This approach contrasts with traditional enzymatic hydrolysis and fermentation pathways. The hard carbon anode was incorporated into sodium-ion batteries, demonstrating practical feasibility with an initial reversible capacity (IRC) of 348 mAh g-1, an initial coulombic efficiency (ICE) of 70.5 %, and capacity retention of 91.7 % after 100 cycles. This dual-product approach maximizes COS utilization and synergizes renewable chemical production with advanced energy storage, highlighting the unique advantages of our approach to XOS synthesis and material optimization, showcasing a clear advantage over existing single-product pathways.
油茶壳(Camellia oleifera shell, COS)是一种富含木质素和半纤维素的栽培副产物,具有重要的资源开发潜力。在这项研究中,我们开发了一种综合的生物炼制方法,使用温和的金属氯化物催化水热预处理来汽化COS废物。在优化条件(0.03 M AlCl3, 170 °C, 60 min)下,富含半纤维素的COS选择性解聚为低聚木糖(XOS),收率为49.8 %。这种高效的路易斯酸催化方法产生了高的XOS产率和纤维素和木质素丰富的固体残留物。与未经处理的样品相比,这些残留物的半纤维素含量降低,产生的硬碳层间距增加,孔隙结构封闭,具有更好的钠储存能力。这种方法与传统的酶水解和发酵途径形成对比。硬碳阳极应用于钠离子电池中,经100次循环后,其初始可逆容量(IRC)为348 mAh g-1,初始库仑效率(ICE)为70.5 %,容量保持率为91.7 %。这种双产品方法最大限度地提高了COS的利用率,并将可再生化学品生产与先进的储能相结合,突出了我们在XOS合成和材料优化方面的独特优势,展示了比现有单产品途径明显的优势。
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.