A novel cascade utilization of Camellia oleifera shell waste for co-production of xylo-oligosaccharides and high-performance hard carbon: processes and mechanisms.

IF 9 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Bioresource Technology Pub Date : 2025-12-01 Epub Date: 2025-08-05 DOI:10.1016/j.biortech.2025.133101
Meng Li, Yangyang Chen, Yan Qing, Ming Liu, Yiqiang Wu, Lei Li
{"title":"A novel cascade utilization of Camellia oleifera shell waste for co-production of xylo-oligosaccharides and high-performance hard carbon: processes and mechanisms.","authors":"Meng Li, Yangyang Chen, Yan Qing, Ming Liu, Yiqiang Wu, Lei Li","doi":"10.1016/j.biortech.2025.133101","DOIUrl":null,"url":null,"abstract":"<p><p>Camellia oleifera shell (COS), a lignin- and hemicellulose-rich cultivation byproduct, offers significant potential for resource extraction. In this study, we developed an integrated biorefinery approach using mild metal chloride-catalyzed hydrothermal pretreatment to vaporize COS waste. Under optimized conditions (0.03 M AlCl<sub>3</sub>, 170 °C, 60 min), hemicellulose-rich COS was selectively depolymerized into xylo-oligosaccharides (XOS) with a yield of 49.8 %. This efficient Lewis acid-catalyzed method produced high XOS yields and cellulose- and lignin-enriched solid residues. Compared to untreated samples, these residues, with reduced hemicellulose content, yielded hard carbon with increased interlayer spacing and closed pore structures, exhibiting superior sodium storage ability. This approach contrasts with traditional enzymatic hydrolysis and fermentation pathways. The hard carbon anode was incorporated into sodium-ion batteries, demonstrating practical feasibility with an initial reversible capacity (IRC) of 348 mAh g<sup>-1</sup>, an initial coulombic efficiency (ICE) of 70.5 %, and capacity retention of 91.7 % after 100 cycles. This dual-product approach maximizes COS utilization and synergizes renewable chemical production with advanced energy storage, highlighting the unique advantages of our approach to XOS synthesis and material optimization, showcasing a clear advantage over existing single-product pathways.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"133101"},"PeriodicalIF":9.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2025.133101","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Camellia oleifera shell (COS), a lignin- and hemicellulose-rich cultivation byproduct, offers significant potential for resource extraction. In this study, we developed an integrated biorefinery approach using mild metal chloride-catalyzed hydrothermal pretreatment to vaporize COS waste. Under optimized conditions (0.03 M AlCl3, 170 °C, 60 min), hemicellulose-rich COS was selectively depolymerized into xylo-oligosaccharides (XOS) with a yield of 49.8 %. This efficient Lewis acid-catalyzed method produced high XOS yields and cellulose- and lignin-enriched solid residues. Compared to untreated samples, these residues, with reduced hemicellulose content, yielded hard carbon with increased interlayer spacing and closed pore structures, exhibiting superior sodium storage ability. This approach contrasts with traditional enzymatic hydrolysis and fermentation pathways. The hard carbon anode was incorporated into sodium-ion batteries, demonstrating practical feasibility with an initial reversible capacity (IRC) of 348 mAh g-1, an initial coulombic efficiency (ICE) of 70.5 %, and capacity retention of 91.7 % after 100 cycles. This dual-product approach maximizes COS utilization and synergizes renewable chemical production with advanced energy storage, highlighting the unique advantages of our approach to XOS synthesis and material optimization, showcasing a clear advantage over existing single-product pathways.

油茶壳废弃物级联联产低聚木糖和高性能硬碳的新工艺与机制。
油茶壳(Camellia oleifera shell, COS)是一种富含木质素和半纤维素的栽培副产物,具有重要的资源开发潜力。在这项研究中,我们开发了一种综合的生物炼制方法,使用温和的金属氯化物催化水热预处理来汽化COS废物。在优化条件(0.03 M AlCl3, 170 °C, 60 min)下,富含半纤维素的COS选择性解聚为低聚木糖(XOS),收率为49.8 %。这种高效的路易斯酸催化方法产生了高的XOS产率和纤维素和木质素丰富的固体残留物。与未经处理的样品相比,这些残留物的半纤维素含量降低,产生的硬碳层间距增加,孔隙结构封闭,具有更好的钠储存能力。这种方法与传统的酶水解和发酵途径形成对比。硬碳阳极应用于钠离子电池中,经100次循环后,其初始可逆容量(IRC)为348 mAh g-1,初始库仑效率(ICE)为70.5 %,容量保持率为91.7 %。这种双产品方法最大限度地提高了COS的利用率,并将可再生化学品生产与先进的储能相结合,突出了我们在XOS合成和材料优化方面的独特优势,展示了比现有单产品途径明显的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信