N-modulated algal-bacterial symbiosis: Dual detoxification and bioproduction enhancement from acid-lignocellulosic pretreatment wastewater

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Huiying Wang , Wei Qi , Wen Wang , Mostafa Elshobary , Pingzhong Feng , Shunni Zhu , Zhongming Wang , Lei Qin
{"title":"N-modulated algal-bacterial symbiosis: Dual detoxification and bioproduction enhancement from acid-lignocellulosic pretreatment wastewater","authors":"Huiying Wang ,&nbsp;Wei Qi ,&nbsp;Wen Wang ,&nbsp;Mostafa Elshobary ,&nbsp;Pingzhong Feng ,&nbsp;Shunni Zhu ,&nbsp;Zhongming Wang ,&nbsp;Lei Qin","doi":"10.1016/j.biortech.2025.132978","DOIUrl":null,"url":null,"abstract":"<div><div>The lignocellulosic biorefining process produces acid-pretreated lignocellulosic wastewater (ALPW), which is rich in fermentable sugars but also contains inhibitory compounds (furfural/5-HMF/acetic acid). This study first systematically assessed the potential for ALPW valorization through algal-bacterial symbiosis with <em>N</em>-regulation. The results showed that 4 × ALPW enabled optimal algal biomass (3.95 g/L). Synchronous culture of algal-bacterial symbiosis in 2 × ALPW achieved 74.7 % sugar consumption and complete inhibitor detoxification, outperforming asynchronous culture. <em>N</em>-regulation with 80 mg/L NO<sub>3</sub><sup>−</sup>-N + 40 mg/L NH<sub>4</sub><sup>+</sup>-N maximized biomass (4.30 g/L) and carbon fixation (330.60 mg/L/d). The system converted 56.2 % carbon and 68.0 % nitrogen into biomass, with 1 ton corn stalk yielding 86.7 kg biomass (protein/carbohydrate/lipid: 36.6/27.1/16.0 kg). This research not only advances algal-bacterial wastewater treatment but also offers a practical, cost-effective pathway for lignocellulosic biorefineries to transition toward a circular economy. Future studies will prioritize pilot-scale validation of the <em>N</em>-modulated symbiosis for ALPW treatment and integration with biorefinery processes to improve economic viability.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"436 ","pages":"Article 132978"},"PeriodicalIF":9.7000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852425009447","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The lignocellulosic biorefining process produces acid-pretreated lignocellulosic wastewater (ALPW), which is rich in fermentable sugars but also contains inhibitory compounds (furfural/5-HMF/acetic acid). This study first systematically assessed the potential for ALPW valorization through algal-bacterial symbiosis with N-regulation. The results showed that 4 × ALPW enabled optimal algal biomass (3.95 g/L). Synchronous culture of algal-bacterial symbiosis in 2 × ALPW achieved 74.7 % sugar consumption and complete inhibitor detoxification, outperforming asynchronous culture. N-regulation with 80 mg/L NO3-N + 40 mg/L NH4+-N maximized biomass (4.30 g/L) and carbon fixation (330.60 mg/L/d). The system converted 56.2 % carbon and 68.0 % nitrogen into biomass, with 1 ton corn stalk yielding 86.7 kg biomass (protein/carbohydrate/lipid: 36.6/27.1/16.0 kg). This research not only advances algal-bacterial wastewater treatment but also offers a practical, cost-effective pathway for lignocellulosic biorefineries to transition toward a circular economy. Future studies will prioritize pilot-scale validation of the N-modulated symbiosis for ALPW treatment and integration with biorefinery processes to improve economic viability.

Abstract Image

氮调节的藻-细菌共生:酸-木质纤维素预处理废水的双重解毒和生物生产增强。
木质纤维素生物精制工艺产生的酸预处理木质纤维素废水(ALPW)富含可发酵糖,但也含有抑制化合物(糠醛/5-羟甲基糠醛/乙酸)。本研究首先系统地评估了通过氮调节的藻类-细菌共生对ALPW增值的潜力。结果表明,4 × ALPW可使藻类生物量达到最佳水平(3.95 g/L)。在2 × ALPW中,同步培养的藻-细菌共生的糖消耗达到74.7 %,抑制剂脱毒完全,优于异步培养。用80 mg/L NO3—N + 40 mg/L NH4+-N调节N可使生物量(4.30 g/L)和固碳量(330.60 mg/L/d)达到最大。该系统将56.2% %的碳和68.0% %的氮转化为生物质,1吨玉米秸秆可产生86.7 kg的生物质(蛋白质/碳水化合物/脂质:36.6/27.1/16.0 kg)。这项研究不仅推进了藻类-细菌废水处理,而且为木质纤维素生物精炼厂向循环经济过渡提供了一条实用、经济的途径。未来的研究将优先考虑对氮调制共生系统进行中试验证,以处理ALPW,并与生物炼制工艺相结合,以提高经济可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信