Solar RRLPub Date : 2025-03-18DOI: 10.1002/solr.202500052
Gan Zuo, Peide Zhu, Jie Zeng, Deng Wang, Wenbo Peng, Gang Liu, Xingzhu Wang, Yong Zhang, Baomin Xu
{"title":"Modulating Internal Residual Stress for Efficient and Durable Flexible Perovskite Solar Cells","authors":"Gan Zuo, Peide Zhu, Jie Zeng, Deng Wang, Wenbo Peng, Gang Liu, Xingzhu Wang, Yong Zhang, Baomin Xu","doi":"10.1002/solr.202500052","DOIUrl":"https://doi.org/10.1002/solr.202500052","url":null,"abstract":"<p>Flexible perovskite solar cells (F-PSCs) are promising due to their low cost and versatility. However, the thermal instability of flexible substrates often results in internal defects and residual stress during the formation of perovskite films. To address this issue, cellulose diacetate (CDA), a green and eco-friendly material derived from natural plant fibers, is used. CDA not only enhanced the quality of the perovskite films but also reduced the generation of internal residual stress. Furthermore, it effectively passivates defects that arise during the annealing process. As a result, a power conversion efficiency of 24.68% on flexible substrate, which is one of the highest values in the F-PSCs, is achieved. The incorporation of CDA also lead to a more uniform stress distribution in the films during bending, significantly improving the long-term environmental stability of the flexible devices. This sustainable fiber-based approach provides a new direction for the advancement of flexible solar cells.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 9","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143909667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Solar RRLPub Date : 2025-03-16DOI: 10.1002/solr.202500042
Youpeng Wang, You Gao, Pengfei Liu, Chen Jia, Jin Si, Jiuda Wen, Zetong Sunli, Xiaona Du, Ying Zhao, Xiaodan Zhang, Biao Shi
{"title":"Scalable Passivation of Perovskite Solar Cells Using Evaporated CsPbCl3","authors":"Youpeng Wang, You Gao, Pengfei Liu, Chen Jia, Jin Si, Jiuda Wen, Zetong Sunli, Xiaona Du, Ying Zhao, Xiaodan Zhang, Biao Shi","doi":"10.1002/solr.202500042","DOIUrl":"https://doi.org/10.1002/solr.202500042","url":null,"abstract":"<p>The suboptimal interfacial quality between the perovskite absorption layer and the electron-transport layer constrains the performance of perovskite solar cells. Introducing an interface passivation layer is generally recognized as an effective method for addressing this issue. A uniform passivation film with a large area can be prepared using an evaporation technique. In this study, we designed and fabricated an inorganic CsPbCl<sub>3</sub> passivation layer by the coevaporation of PbCl<sub>2</sub> and CsCl. The evaporated passivator exhibited excellent interface passivation effects and a relatively low thickness sensitivity to device performance. As a result, the open-circuit voltage of perovskite solar cells with a 1.68 eV perovskite absorber was improved by nearly 100 mV, and the device efficiency achieved was 21.84%, ranking as the highest efficiency based on the hybrid evaporation-solution method. The proposed passivation approach has potential applications in large-area perovskite solar cells.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 8","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143865990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of Potential-Induced Degradation in Perovskite Solar Cells under Inert Conditions","authors":"Robbe Breugelmans, Stijn Lammar, Aranzazu Aguirre, Tom Aernouts, Bart Vermang, Michaël Daenen","doi":"10.1002/solr.202400923","DOIUrl":"https://doi.org/10.1002/solr.202400923","url":null,"abstract":"<p>Perovskite solar cells (PSCs) have emerged as a promising photovoltaic technology due to their remarkable efficiency advancements. However, their commercialization is hindered by stability challenges, including sensitivity to environmental conditions and a critical degradation mechanism known as potential-induced degradation (PID). PID can significantly impair PSC performance within hours under operational conditions. This study investigates PID in 48 triple-cation p-i-n PSCs over 313 h in an inert environment, excluding additional stressors like moisture and oxygen. The PID-stressed devices degraded to 79% of their initial efficiency, primarily driven by losses in short-circuit current density. Time-of-flight secondary ion mass spectroscopy revealed sodium ion migration from soda-lime glass substrates into the perovskite layer. Interestingly, photoluminescence and X-ray diffraction analyses detected no measurable differences between PID-stressed and reference devices, contradicting prior literature that associates PID with perovskite segregation and decomposition. These findings challenge the conventional understanding of PID, suggesting that environmental factors such as oxygen and moisture might exacerbate degradation effects. This work provides critical insights into the intrinsic mechanisms of PID under controlled conditions and highlights the need for further research into the interplay between PID and environmental stressors to guide the development of more stable PSC technologies.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 7","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143761937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Solar RRLPub Date : 2025-03-12DOI: 10.1002/solr.202500038
Kang Liu, Fei Jin, Jieyuan Du, Peizhen Wang, Guoping Jiang, Zhiliang Jin
{"title":"ZIF-67 Anchored Mn0.5Cd0.5S Constructs S-Scheme Heterojunctions to Facilitate Photocatalytic Hydrogen Production","authors":"Kang Liu, Fei Jin, Jieyuan Du, Peizhen Wang, Guoping Jiang, Zhiliang Jin","doi":"10.1002/solr.202500038","DOIUrl":"https://doi.org/10.1002/solr.202500038","url":null,"abstract":"<p>Photocatalytic hydrogen production is regarded as one of the most promising approaches for solar energy utilization due to its reliance on renewable energy sources, environmental friendliness, and generation of clean energy. In this field, Mn<sub>0.5</sub>Cd<sub>0.5</sub>S demonstrates considerable potential, but its severe stacking issue and insufficient exposure of active sites restrict its application. Although Mn<sub>0.5</sub>Cd<sub>0.5</sub>S demonstrates considerable potential, its severe stacking issue and insufficient exposure of active sites restrict its application. In this research, by combining Mn<sub>0.5</sub>Cd<sub>0.5</sub>S with dodecahedral ZIF-67 and optimizing the interfacial electronic structure, a uniform distribution of Mn<sub>0.5</sub>Cd<sub>0.5</sub>S on the surface of ZIF-67 was successfully accomplished. Synthesis of composite materials effectively mitigated the agglomeration phenomenon of Mn<sub>0.5</sub>Cd<sub>0.5</sub>S and constructed an S-scheme heterostructure of Mn<sub>0.5</sub>Cd<sub>0.5</sub>S/ZIF-67. The resulting composite achieved a hydrogen yield of 677.4 μmol in a lactic acid system, 6.8 times higher than that of pure Mn<sub>0.5</sub>Cd<sub>0.5</sub>S. This notable enhancement is attributed to the increased specific surface area of the composite, facilitating greater exposure of the active sites and improving charge transfer efficiency. In situ X-ray photoelectron spectroscopy analysis revealed the underlying electron transfer mechanism, while EPR studies confirmed the enhanced redox capacity of the composite, further supporting its superior performance in hydrogen production. This research offers new insights into morphology and interface engineering for Mn<sub>0.5</sub>Cd<sub>0.5</sub>S-based materials.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 8","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143865648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Solution-Processed SnOx as a Hole-Transporting Material for Stable Sn-Based Perovskite Solar Cell","authors":"Jannatul Ferdous, Md. Emrul Kayesh, Wipakorn Jevasuwan, Naoki Fukata, Ashraful Islam","doi":"10.1002/solr.202500047","DOIUrl":"https://doi.org/10.1002/solr.202500047","url":null,"abstract":"<p>Sn-perovskites are considered a suitable alternative to toxic Pb-perovskites due to their low toxicity and optimum optoelectronic properties. However, high-efficiency Sn-based perovskite solar cells (Sn-PSCs) typically use poly (3,4-ethylenedioxythiophene):polystyrene sulfonic acid (PEDOT:PSS) as a hole-transporting material (HTM), which limits their stability due to its acidic nature. This study introduces SnO<sub><i>X</i></sub> nanocrystals, synthesized through a synproportionation reaction of Sn<sup>4+</sup> with Sn<sup>0</sup> under mild conditions, as a replacement for PEDOT:PSS. X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy analyses revealed that the Sn<sup>0</sup> reduces Sn<sup>4+</sup> by 38% and elevates the highest occupied molecular orbital to –5.70 eV, close to PEDOT:PSS, enabling HTM behavior. The perovskite films on SnO<sub><i>X</i></sub> exhibit improved grain size and crystallinity compared to PEDOT:PSS. The resulting SnO<sub><i>X</i></sub>-based Sn-PSCs achieved a power conversion efficiency of 11.11%. They retained 90% of their efficiency after 1000 h of maximum power point tracking, indicating superior stability over PEDOT:PSS-based devices.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 7","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202500047","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143762252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Solvent-Tailored Carbon Paste for Effective Carbon-Based Perovskite Solar Cells","authors":"Atittaya Naikaew, Supavidh Burimart, Ladda Srathongsian, Chaowaphat Seriwattanachai, Patawee Sakata, Kanokwan Choodam, Kittikhun Khotmungkhun, Waroot Kanlayakan, Pimsuda Pansa-Ngat, Ko Ko Shin Thant, Thanawat Kanlayapattamapong, Pipat Ruankham, Hideki Nakajima, Ratchadaporn Supruangnet, Pongsakorn Kanjanaboos","doi":"10.1002/solr.202400910","DOIUrl":"https://doi.org/10.1002/solr.202400910","url":null,"abstract":"<p>Printable planar carbon electrodes present a cost-effective and highly promising alternative to thermally evaporated metals, serving as the rear contact for stable perovskite solar cells (PSCs). However, the power conversion efficiencies (PCEs) of the carbon-based PSCs (C-PSCs) are notably lower compared to those of state-of-the-art PSCs. The inferior contact between the carbon electrode and the underlying layer contributes to the performance loss. Here, we developed scalable doctor-bladed carbon electrode by simultaneously incorporating 4 wt% carbon black and utilizing toluene (TLE) solvent engineering to a commercial carbon paste, resulting in improved flexibility and conductivity while yielding reduction of resistivity by 50% measured via a 4-point probe. Consequently, the carbon sheet can efficiently adhere the underlying hole-transporting layer by a simple pressing technique, significantly boosting charge transfer across the interface. The TLE device achieves a champion PCE of 15.77% with an ultralow hysteresis index (HI) of 0.027, compared to the solvent-free device which has a HI of 0.176. The developed carbon-based device exhibits notably improved long-term stability when subjected to dark conditions and 40-50% RH, sustaining 82% of its initial efficiency after 24 days without encapsulation with minimal declines in <i>J</i><sub>sc</sub> and <i>V</i><sub>oc</sub>.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 8","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400910","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143865525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Solar RRLPub Date : 2025-03-10DOI: 10.1002/solr.202500034
Sarune Daskeviciute, Yi Zhang, Maryte Daskeviciene, Kasparas Rakstys, Julius Petrulevicius, Vygintas Jankauskas, Vytautas Getautis, Mohammad Khaja Nazeeruddin
{"title":"Facile and Low-Cost Design Alternative of Spiro-OMeTAD as p-Type Semiconductor for Efficient Perovskite Solar Cells","authors":"Sarune Daskeviciute, Yi Zhang, Maryte Daskeviciene, Kasparas Rakstys, Julius Petrulevicius, Vygintas Jankauskas, Vytautas Getautis, Mohammad Khaja Nazeeruddin","doi":"10.1002/solr.202500034","DOIUrl":"https://doi.org/10.1002/solr.202500034","url":null,"abstract":"<p>A simple diphenylamine-based hole transporting material <b>V1553</b> was synthesized and incorporated into a perovskite solar cell, which showed remarkable power conversion efficiency close to 23%. The investigated HTM was synthesized via one-step catalyst-free condensation reaction from commercially available and extremely cheap starting reagents, resulting in a fractional cost of the final product compared to the commercial spiro-OMeTAD. This material promises to be a viable p-type organic semiconductor to be employed in the manufacturing of perovskite solar modules.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 8","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202500034","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143865823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Decoration of Two-Dimensional Cus Nanoflakes on Graphitic Carbon Foam Derived from Waste Plastic for Interfacial Solar Desalination","authors":"Muzammil Hussain, Anastasiia Taranova, Kassa Belay Ibrahim, Alessandro Gradone, Enrique Rodríguez-Castellón, Silvia Gross, Vittorio Morandi, Elisa Moretti, Alberto Vomiero, Tofik Ahmed Shifa","doi":"10.1002/solr.202400777","DOIUrl":"https://doi.org/10.1002/solr.202400777","url":null,"abstract":"<p>Interfacial solar desalination using plasmonic metal semiconductors is a valuable process for freshwater production. However, the design of a sustainable and efficient photothermal evaporator is still challenging. In the present research, polyethylene terephthalate waste bottles were upcycled into carbon foam (CF) and further functionalized with CuS nanoflakes as a photothermal layer. Analytical characterizations (X-ray diffraction, Fourier transform infrared spectroscopy, Scanning electron microscopy, and scanning transmission electron microscopy–high-angle annular dark field) demonstrated the successful decoration of two-dimensional Covellite CuS nanoflakes on graphitic CF having microporous channels. UV/vis spectroscopy measurements show enhanced optical absorption with CuS/CF of up to 95% compared to bare CF (72%). The photothermal desalination experiment displayed an improved evaporation rate of 1.90 kg m<sup>−2</sup> h<sup>−1</sup> for the CuS–CF compared to 1.58 kg m<sup>−2</sup> h<sup>−1</sup> for the bare CF and CuS 1.41 kg m<sup>−2</sup> h<sup>1</sup>, reveling the excellent water evaporation efficiency of 91%. The obtained results suggested that the design of CuS-functionalized CF derived from waste plastic for solar desalination is a useful strategy to produce fresh water from the upcycling of waste materials and a good example of circular economy through the development of engineered composite systems.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 7","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400777","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143762296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Solar RRLPub Date : 2025-03-09DOI: 10.1002/solr.202400666
Ivan M. Santos, Miguel Alexandre, António T. Vicente, Cristina Teixeira, Eva Almeida, Elvira Fortunato, Rodrigo Martins, Hugo Águas, Manuel J. Mendes
{"title":"Next-Generation Solar-Powering: Photonic Strategies for Earth and Space Systems","authors":"Ivan M. Santos, Miguel Alexandre, António T. Vicente, Cristina Teixeira, Eva Almeida, Elvira Fortunato, Rodrigo Martins, Hugo Águas, Manuel J. Mendes","doi":"10.1002/solr.202400666","DOIUrl":"https://doi.org/10.1002/solr.202400666","url":null,"abstract":"<p>Escalating environmental and energy supply concerns, coupled with an increasing interest in space exploration, are driving the development of advanced energy harvesting systems and the adoption of cutting-edge photovoltaic (PV) technologies. Photonics allows precise light manipulation in a multitude of ways, empowering PV with the means to tackle the multifaceted challenges inherent to the harsh space environment, with great potential to concomitantly spin off to on-Earth systems, prioritizing efficiency and reliability. This review thus synthesizes the key insights from the latest experimental and simulation R&D outcomes to inform the design and implementation of advanced photonic strategies for various PV applications. The state-of-the-art performance and foreground of photonic-managed thick- (single-junction crystalline silicon, c-Si, and perovskite-on-silicon tandem) and thin-film (hydrogenated amorphous silicon, a-Si:H, and perovskite) PV devices are assessed by comparison with theoretical ideal light-trapping scenarios (single-, double-pass, and Lambertian absorption models), looking also at the potential of photonic coolers as an emergent platform for effective thermal management. Finally, this work examines novel photonic approaches for spectrum modification, emphasizing the relevance of illumination-tailoring for outer space systems.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 7","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400666","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143761947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Achieving High-Quality Wide Bandgap Perovskite Thin Films via Regulating the Halide Ion Exchange Order in Vapor-Solid Reaction","authors":"Wenjuan Xiong, Shenghan Hu, Yuanbo Song, Yichen Dou, Jiace Liang, Zhangwei Yuan, Xinyu Deng, Meichen Liu, Mengjun Liu, Ziyue Qiang, Zhiliang Ku","doi":"10.1002/solr.202500053","DOIUrl":"https://doi.org/10.1002/solr.202500053","url":null,"abstract":"<p>Wide-bandgap (WBG) perovskite films are vital for advancing high-efficiency silicon/perovskite tandem technology. However, the performance of WBG perovskite films produced using vapor deposition techniques often lags behind that of solution-based methods due to challenges in accurately controlling the halide ions and crystallization quality, particularly the Br/I ratio in vapor-deposited perovskite films. In this study, we investigated the halide ion exchange (IE) process in vapor-solid reaction and developed two methods for producing CsFAPbI<sub><i>x</i></sub>Br<sub>3−<i>x</i></sub> WBG perovskite thin films: one involved reacting CsFAPbI<sub>3</sub> in FABr vapor (I-based IE perovskite), while the other used CsFAPbBr<sub>3</sub> in FAI vapor (Br-based IE perovskite). Our findings demonstrate that the Br-based IE perovskite exhibits superior crystallization quality and lower defect density throughout the ion exchange process. As a result, this approach has facilitated the development of WBG perovskite solar cells with a maximum power conversion efficiency of 19.51%. Additionally, unencapsulated devices were able to retain 88.9% of their initial efficiency after being stored for 1500 hr under atmospheric conditions (25°C, 18 ± 5% RH). This research provides a novel strategy and methodology for fabricating high-performance WBG perovskite solar cell via vapor-based techniques, which is crucial for the industrialization of both perovskite solar cells and silicon/perovskite tandem solar cells.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 9","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143909455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}