{"title":"Investigation of Potential-Induced Degradation in Perovskite Solar Cells under Inert Conditions","authors":"Robbe Breugelmans, Stijn Lammar, Aranzazu Aguirre, Tom Aernouts, Bart Vermang, Michaël Daenen","doi":"10.1002/solr.202400923","DOIUrl":null,"url":null,"abstract":"<p>Perovskite solar cells (PSCs) have emerged as a promising photovoltaic technology due to their remarkable efficiency advancements. However, their commercialization is hindered by stability challenges, including sensitivity to environmental conditions and a critical degradation mechanism known as potential-induced degradation (PID). PID can significantly impair PSC performance within hours under operational conditions. This study investigates PID in 48 triple-cation p-i-n PSCs over 313 h in an inert environment, excluding additional stressors like moisture and oxygen. The PID-stressed devices degraded to 79% of their initial efficiency, primarily driven by losses in short-circuit current density. Time-of-flight secondary ion mass spectroscopy revealed sodium ion migration from soda-lime glass substrates into the perovskite layer. Interestingly, photoluminescence and X-ray diffraction analyses detected no measurable differences between PID-stressed and reference devices, contradicting prior literature that associates PID with perovskite segregation and decomposition. These findings challenge the conventional understanding of PID, suggesting that environmental factors such as oxygen and moisture might exacerbate degradation effects. This work provides critical insights into the intrinsic mechanisms of PID under controlled conditions and highlights the need for further research into the interplay between PID and environmental stressors to guide the development of more stable PSC technologies.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 7","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400923","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Perovskite solar cells (PSCs) have emerged as a promising photovoltaic technology due to their remarkable efficiency advancements. However, their commercialization is hindered by stability challenges, including sensitivity to environmental conditions and a critical degradation mechanism known as potential-induced degradation (PID). PID can significantly impair PSC performance within hours under operational conditions. This study investigates PID in 48 triple-cation p-i-n PSCs over 313 h in an inert environment, excluding additional stressors like moisture and oxygen. The PID-stressed devices degraded to 79% of their initial efficiency, primarily driven by losses in short-circuit current density. Time-of-flight secondary ion mass spectroscopy revealed sodium ion migration from soda-lime glass substrates into the perovskite layer. Interestingly, photoluminescence and X-ray diffraction analyses detected no measurable differences between PID-stressed and reference devices, contradicting prior literature that associates PID with perovskite segregation and decomposition. These findings challenge the conventional understanding of PID, suggesting that environmental factors such as oxygen and moisture might exacerbate degradation effects. This work provides critical insights into the intrinsic mechanisms of PID under controlled conditions and highlights the need for further research into the interplay between PID and environmental stressors to guide the development of more stable PSC technologies.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.