Kang Liu, Fei Jin, Jieyuan Du, Peizhen Wang, Guoping Jiang, Zhiliang Jin
{"title":"ZIF-67锚定Mn0.5Cd0.5S构建s型异质结促进光催化制氢","authors":"Kang Liu, Fei Jin, Jieyuan Du, Peizhen Wang, Guoping Jiang, Zhiliang Jin","doi":"10.1002/solr.202500038","DOIUrl":null,"url":null,"abstract":"<p>Photocatalytic hydrogen production is regarded as one of the most promising approaches for solar energy utilization due to its reliance on renewable energy sources, environmental friendliness, and generation of clean energy. In this field, Mn<sub>0.5</sub>Cd<sub>0.5</sub>S demonstrates considerable potential, but its severe stacking issue and insufficient exposure of active sites restrict its application. Although Mn<sub>0.5</sub>Cd<sub>0.5</sub>S demonstrates considerable potential, its severe stacking issue and insufficient exposure of active sites restrict its application. In this research, by combining Mn<sub>0.5</sub>Cd<sub>0.5</sub>S with dodecahedral ZIF-67 and optimizing the interfacial electronic structure, a uniform distribution of Mn<sub>0.5</sub>Cd<sub>0.5</sub>S on the surface of ZIF-67 was successfully accomplished. Synthesis of composite materials effectively mitigated the agglomeration phenomenon of Mn<sub>0.5</sub>Cd<sub>0.5</sub>S and constructed an S-scheme heterostructure of Mn<sub>0.5</sub>Cd<sub>0.5</sub>S/ZIF-67. The resulting composite achieved a hydrogen yield of 677.4 μmol in a lactic acid system, 6.8 times higher than that of pure Mn<sub>0.5</sub>Cd<sub>0.5</sub>S. This notable enhancement is attributed to the increased specific surface area of the composite, facilitating greater exposure of the active sites and improving charge transfer efficiency. In situ X-ray photoelectron spectroscopy analysis revealed the underlying electron transfer mechanism, while EPR studies confirmed the enhanced redox capacity of the composite, further supporting its superior performance in hydrogen production. This research offers new insights into morphology and interface engineering for Mn<sub>0.5</sub>Cd<sub>0.5</sub>S-based materials.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 8","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ZIF-67 Anchored Mn0.5Cd0.5S Constructs S-Scheme Heterojunctions to Facilitate Photocatalytic Hydrogen Production\",\"authors\":\"Kang Liu, Fei Jin, Jieyuan Du, Peizhen Wang, Guoping Jiang, Zhiliang Jin\",\"doi\":\"10.1002/solr.202500038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Photocatalytic hydrogen production is regarded as one of the most promising approaches for solar energy utilization due to its reliance on renewable energy sources, environmental friendliness, and generation of clean energy. In this field, Mn<sub>0.5</sub>Cd<sub>0.5</sub>S demonstrates considerable potential, but its severe stacking issue and insufficient exposure of active sites restrict its application. Although Mn<sub>0.5</sub>Cd<sub>0.5</sub>S demonstrates considerable potential, its severe stacking issue and insufficient exposure of active sites restrict its application. In this research, by combining Mn<sub>0.5</sub>Cd<sub>0.5</sub>S with dodecahedral ZIF-67 and optimizing the interfacial electronic structure, a uniform distribution of Mn<sub>0.5</sub>Cd<sub>0.5</sub>S on the surface of ZIF-67 was successfully accomplished. Synthesis of composite materials effectively mitigated the agglomeration phenomenon of Mn<sub>0.5</sub>Cd<sub>0.5</sub>S and constructed an S-scheme heterostructure of Mn<sub>0.5</sub>Cd<sub>0.5</sub>S/ZIF-67. The resulting composite achieved a hydrogen yield of 677.4 μmol in a lactic acid system, 6.8 times higher than that of pure Mn<sub>0.5</sub>Cd<sub>0.5</sub>S. This notable enhancement is attributed to the increased specific surface area of the composite, facilitating greater exposure of the active sites and improving charge transfer efficiency. In situ X-ray photoelectron spectroscopy analysis revealed the underlying electron transfer mechanism, while EPR studies confirmed the enhanced redox capacity of the composite, further supporting its superior performance in hydrogen production. This research offers new insights into morphology and interface engineering for Mn<sub>0.5</sub>Cd<sub>0.5</sub>S-based materials.</p>\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"9 8\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500038\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500038","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
ZIF-67 Anchored Mn0.5Cd0.5S Constructs S-Scheme Heterojunctions to Facilitate Photocatalytic Hydrogen Production
Photocatalytic hydrogen production is regarded as one of the most promising approaches for solar energy utilization due to its reliance on renewable energy sources, environmental friendliness, and generation of clean energy. In this field, Mn0.5Cd0.5S demonstrates considerable potential, but its severe stacking issue and insufficient exposure of active sites restrict its application. Although Mn0.5Cd0.5S demonstrates considerable potential, its severe stacking issue and insufficient exposure of active sites restrict its application. In this research, by combining Mn0.5Cd0.5S with dodecahedral ZIF-67 and optimizing the interfacial electronic structure, a uniform distribution of Mn0.5Cd0.5S on the surface of ZIF-67 was successfully accomplished. Synthesis of composite materials effectively mitigated the agglomeration phenomenon of Mn0.5Cd0.5S and constructed an S-scheme heterostructure of Mn0.5Cd0.5S/ZIF-67. The resulting composite achieved a hydrogen yield of 677.4 μmol in a lactic acid system, 6.8 times higher than that of pure Mn0.5Cd0.5S. This notable enhancement is attributed to the increased specific surface area of the composite, facilitating greater exposure of the active sites and improving charge transfer efficiency. In situ X-ray photoelectron spectroscopy analysis revealed the underlying electron transfer mechanism, while EPR studies confirmed the enhanced redox capacity of the composite, further supporting its superior performance in hydrogen production. This research offers new insights into morphology and interface engineering for Mn0.5Cd0.5S-based materials.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.