Youpeng Wang, You Gao, Pengfei Liu, Chen Jia, Jin Si, Jiuda Wen, Zetong Sunli, Xiaona Du, Ying Zhao, Xiaodan Zhang, Biao Shi
{"title":"Scalable Passivation of Perovskite Solar Cells Using Evaporated CsPbCl3","authors":"Youpeng Wang, You Gao, Pengfei Liu, Chen Jia, Jin Si, Jiuda Wen, Zetong Sunli, Xiaona Du, Ying Zhao, Xiaodan Zhang, Biao Shi","doi":"10.1002/solr.202500042","DOIUrl":null,"url":null,"abstract":"<p>The suboptimal interfacial quality between the perovskite absorption layer and the electron-transport layer constrains the performance of perovskite solar cells. Introducing an interface passivation layer is generally recognized as an effective method for addressing this issue. A uniform passivation film with a large area can be prepared using an evaporation technique. In this study, we designed and fabricated an inorganic CsPbCl<sub>3</sub> passivation layer by the coevaporation of PbCl<sub>2</sub> and CsCl. The evaporated passivator exhibited excellent interface passivation effects and a relatively low thickness sensitivity to device performance. As a result, the open-circuit voltage of perovskite solar cells with a 1.68 eV perovskite absorber was improved by nearly 100 mV, and the device efficiency achieved was 21.84%, ranking as the highest efficiency based on the hybrid evaporation-solution method. The proposed passivation approach has potential applications in large-area perovskite solar cells.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 8","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500042","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The suboptimal interfacial quality between the perovskite absorption layer and the electron-transport layer constrains the performance of perovskite solar cells. Introducing an interface passivation layer is generally recognized as an effective method for addressing this issue. A uniform passivation film with a large area can be prepared using an evaporation technique. In this study, we designed and fabricated an inorganic CsPbCl3 passivation layer by the coevaporation of PbCl2 and CsCl. The evaporated passivator exhibited excellent interface passivation effects and a relatively low thickness sensitivity to device performance. As a result, the open-circuit voltage of perovskite solar cells with a 1.68 eV perovskite absorber was improved by nearly 100 mV, and the device efficiency achieved was 21.84%, ranking as the highest efficiency based on the hybrid evaporation-solution method. The proposed passivation approach has potential applications in large-area perovskite solar cells.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.