{"title":"Solvent-Tailored Carbon Paste for Effective Carbon-Based Perovskite Solar Cells","authors":"Atittaya Naikaew, Supavidh Burimart, Ladda Srathongsian, Chaowaphat Seriwattanachai, Patawee Sakata, Kanokwan Choodam, Kittikhun Khotmungkhun, Waroot Kanlayakan, Pimsuda Pansa-Ngat, Ko Ko Shin Thant, Thanawat Kanlayapattamapong, Pipat Ruankham, Hideki Nakajima, Ratchadaporn Supruangnet, Pongsakorn Kanjanaboos","doi":"10.1002/solr.202400910","DOIUrl":null,"url":null,"abstract":"<p>Printable planar carbon electrodes present a cost-effective and highly promising alternative to thermally evaporated metals, serving as the rear contact for stable perovskite solar cells (PSCs). However, the power conversion efficiencies (PCEs) of the carbon-based PSCs (C-PSCs) are notably lower compared to those of state-of-the-art PSCs. The inferior contact between the carbon electrode and the underlying layer contributes to the performance loss. Here, we developed scalable doctor-bladed carbon electrode by simultaneously incorporating 4 wt% carbon black and utilizing toluene (TLE) solvent engineering to a commercial carbon paste, resulting in improved flexibility and conductivity while yielding reduction of resistivity by 50% measured via a 4-point probe. Consequently, the carbon sheet can efficiently adhere the underlying hole-transporting layer by a simple pressing technique, significantly boosting charge transfer across the interface. The TLE device achieves a champion PCE of 15.77% with an ultralow hysteresis index (HI) of 0.027, compared to the solvent-free device which has a HI of 0.176. The developed carbon-based device exhibits notably improved long-term stability when subjected to dark conditions and 40-50% RH, sustaining 82% of its initial efficiency after 24 days without encapsulation with minimal declines in <i>J</i><sub>sc</sub> and <i>V</i><sub>oc</sub>.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 8","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400910","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400910","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Printable planar carbon electrodes present a cost-effective and highly promising alternative to thermally evaporated metals, serving as the rear contact for stable perovskite solar cells (PSCs). However, the power conversion efficiencies (PCEs) of the carbon-based PSCs (C-PSCs) are notably lower compared to those of state-of-the-art PSCs. The inferior contact between the carbon electrode and the underlying layer contributes to the performance loss. Here, we developed scalable doctor-bladed carbon electrode by simultaneously incorporating 4 wt% carbon black and utilizing toluene (TLE) solvent engineering to a commercial carbon paste, resulting in improved flexibility and conductivity while yielding reduction of resistivity by 50% measured via a 4-point probe. Consequently, the carbon sheet can efficiently adhere the underlying hole-transporting layer by a simple pressing technique, significantly boosting charge transfer across the interface. The TLE device achieves a champion PCE of 15.77% with an ultralow hysteresis index (HI) of 0.027, compared to the solvent-free device which has a HI of 0.176. The developed carbon-based device exhibits notably improved long-term stability when subjected to dark conditions and 40-50% RH, sustaining 82% of its initial efficiency after 24 days without encapsulation with minimal declines in Jsc and Voc.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.