{"title":"Solution-Processed SnOx as a Hole-Transporting Material for Stable Sn-Based Perovskite Solar Cell","authors":"Jannatul Ferdous, Md. Emrul Kayesh, Wipakorn Jevasuwan, Naoki Fukata, Ashraful Islam","doi":"10.1002/solr.202500047","DOIUrl":null,"url":null,"abstract":"<p>Sn-perovskites are considered a suitable alternative to toxic Pb-perovskites due to their low toxicity and optimum optoelectronic properties. However, high-efficiency Sn-based perovskite solar cells (Sn-PSCs) typically use poly (3,4-ethylenedioxythiophene):polystyrene sulfonic acid (PEDOT:PSS) as a hole-transporting material (HTM), which limits their stability due to its acidic nature. This study introduces SnO<sub><i>X</i></sub> nanocrystals, synthesized through a synproportionation reaction of Sn<sup>4+</sup> with Sn<sup>0</sup> under mild conditions, as a replacement for PEDOT:PSS. X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy analyses revealed that the Sn<sup>0</sup> reduces Sn<sup>4+</sup> by 38% and elevates the highest occupied molecular orbital to –5.70 eV, close to PEDOT:PSS, enabling HTM behavior. The perovskite films on SnO<sub><i>X</i></sub> exhibit improved grain size and crystallinity compared to PEDOT:PSS. The resulting SnO<sub><i>X</i></sub>-based Sn-PSCs achieved a power conversion efficiency of 11.11%. They retained 90% of their efficiency after 1000 h of maximum power point tracking, indicating superior stability over PEDOT:PSS-based devices.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 7","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202500047","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500047","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Sn-perovskites are considered a suitable alternative to toxic Pb-perovskites due to their low toxicity and optimum optoelectronic properties. However, high-efficiency Sn-based perovskite solar cells (Sn-PSCs) typically use poly (3,4-ethylenedioxythiophene):polystyrene sulfonic acid (PEDOT:PSS) as a hole-transporting material (HTM), which limits their stability due to its acidic nature. This study introduces SnOX nanocrystals, synthesized through a synproportionation reaction of Sn4+ with Sn0 under mild conditions, as a replacement for PEDOT:PSS. X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy analyses revealed that the Sn0 reduces Sn4+ by 38% and elevates the highest occupied molecular orbital to –5.70 eV, close to PEDOT:PSS, enabling HTM behavior. The perovskite films on SnOX exhibit improved grain size and crystallinity compared to PEDOT:PSS. The resulting SnOX-based Sn-PSCs achieved a power conversion efficiency of 11.11%. They retained 90% of their efficiency after 1000 h of maximum power point tracking, indicating superior stability over PEDOT:PSS-based devices.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.