Small MethodsPub Date : 2025-03-19DOI: 10.1002/smtd.202500081
Yen-Teng Chen, Nai-Wen Hsien, Su-Wen Hsu
{"title":"Plasmonic Nanocrystal-MOF Nanocomposites as Highly Active Photocatalysts and Highly Sensitive Sensors for CO<sub>2</sub> Reduction over a Wide Range of Solar Wavelengths.","authors":"Yen-Teng Chen, Nai-Wen Hsien, Su-Wen Hsu","doi":"10.1002/smtd.202500081","DOIUrl":"https://doi.org/10.1002/smtd.202500081","url":null,"abstract":"<p><p>Plasmonic nanocrystals have the potential to be widely used in green energy-related applications, due to their excellent optical properties and high reactivity over a wide range of solar wavelengths. Another benefit of using plasmonic nanocrystals for optical applications is that these nanocrystals strongly enhance Raman scattering and are therefore widely used in sensors. Recently, nanocomposites of porous materials deposited on plasmonic nanocrystals are demonstrated to enhance chemical reactivity by concentrating reactants on the surface of plasmonic nanocrystals. Here, three different plasmonic nanocrystals producing plasmonic responses within 400-900 nm are used as templates, and MOF-801 (Zr-based MOF) is produced on these nanocrystals as photocatalysts for the CO<sub>2</sub> reduction reaction. Using nanocomposites as CO<sub>2</sub> reduction reaction photocatalysts, the CO<sub>2</sub> conversion rate can reach >50% within 30 min. The CO<sub>2</sub> reduction reactivity of nanocomposites can be improved by the composition and morphology of plasmonic nanocrystals (increased by 40-50%), due to stronger synergistic effects and higher surface area to volume ratio. This report demonstrates that by controlling the plasmonic responses of nanocrystals, it is possible to realize photocatalysts that can be used for CO<sub>2</sub> reduction reactions over a wide range of solar wavelengths.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500081"},"PeriodicalIF":10.7,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small MethodsPub Date : 2025-03-19DOI: 10.1002/smtd.202500144
Jiaye Li, Fei Jiang, Lei Wang, Han Guo, Qianying Lv, Yingying Liu, Siying Huang, Hsiao-Chien Chen, Chao Feng, Yuan Pan
{"title":"Ion-induced Effect of Ce, Ni Dual Site Doped LaCoO<sub>3</sub> Catalyst for Efficient Electrocatalytic Water Oxidation.","authors":"Jiaye Li, Fei Jiang, Lei Wang, Han Guo, Qianying Lv, Yingying Liu, Siying Huang, Hsiao-Chien Chen, Chao Feng, Yuan Pan","doi":"10.1002/smtd.202500144","DOIUrl":"https://doi.org/10.1002/smtd.202500144","url":null,"abstract":"<p><p>Perovskite oxides exhibit excellent performance in water oxidation, but still lacks a precise regulation strategy for the active sites, while the reaction mechanism is poorly understood. Herein, an ion-induced effect (IIE) is proposed of Ce, Ni dual site doped LaCoO<sub>3</sub>(CeNi-LaCoO<sub>3</sub>), where Ni<sup>2+</sup> induces the binding of Co species into bimetallic sites, and Ce<sup>4+</sup> induces the activation of Co species and reduces the Co-O binding energy. Benefiting from the IIE of Ni<sup>2+</sup> and Ce<sup>4+</sup>, the optimized Ce<sub>0.15</sub>La<sub>0.85</sub>Ni<sub>0.3</sub>Co<sub>0.7</sub>O<sub>3</sub> exhibits excellent OER performance with an overpotential of only 330 mV when the current density reached 10 mA cm<sup>-2</sup>, the Tafel slope of 70.93 mV dec<sup>-1</sup> as well as good stability. Theoretical calculations further reveal that the OER occurring on CeNi-LaCoO<sub>3</sub> follows the LOM mechanism, and IIE caused by the doping of the Ce, Ni dual site induces the conversion of Co<sup>2+</sup> to Co<sup>3+</sup>, optimizes the electron arrangement, modulates the electron transfer capacity of the Co site, promotes the conversion of lattice oxygen to OH<sup>-</sup>, lowers the energy barrier for the participation of bulk oxygen in the OER, and thus promotes the OER performance. This work is expected to provide reliable support for the application of high-efficiency perovskite-based OER catalysts.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500144"},"PeriodicalIF":10.7,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small MethodsPub Date : 2025-03-18DOI: 10.1002/smtd.202401171
Tianxiao Hui, Jian Zhou, Muchen Yao, Yige Xie, Hu Zeng
{"title":"Advances in Spatial Omics Technologies.","authors":"Tianxiao Hui, Jian Zhou, Muchen Yao, Yige Xie, Hu Zeng","doi":"10.1002/smtd.202401171","DOIUrl":"https://doi.org/10.1002/smtd.202401171","url":null,"abstract":"<p><p>Rapidly developing spatial omics technologies provide us with new approaches to deeply understanding the diversity and functions of cell types within organisms. Unlike traditional approaches, spatial omics technologies enable researchers to dissect the complex relationships between tissue structure and function at the cellular or even subcellular level. The application of spatial omics technologies provides new perspectives on key biological processes such as nervous system development, organ development, and tumor microenvironment. This review focuses on the advancements and strategies of spatial omics technologies, summarizes their applications in biomedical research, and highlights the power of spatial omics technologies in advancing the understanding of life sciences related to development and disease.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401171"},"PeriodicalIF":10.7,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Emerging Liquid-Based Memristive Devices for Neuromorphic Computation.","authors":"Qinyang Fan, Jianyu Shang, Xiaoxuan Yuan, Zhenyu Zhang, Jingjie Sha","doi":"10.1002/smtd.202402218","DOIUrl":"https://doi.org/10.1002/smtd.202402218","url":null,"abstract":"<p><p>To mimic the neural functions of the human brain, developing hardware with natural similarities to the human nervous system is crucial for realizing neuromorphic computing architectures. Owing to their capability to emulate artificial neurons and synapses, memristors are widely regarded as a leading candidate for achieving neuromorphic computing. However, most current memristor devices are solid-state. In contrast, biological nervous systems operate within an aqueous environment, and the human brain accomplishes intelligent behaviors such as information generation, transmission, and memory by regulating ion transport in neuronal cells. To achieve computing systems that are more analogous to biological systems and more energy-efficient, memristor devices based on liquid environments are developed. In contrast to traditional solid-state memristors, liquid-based memristors possess advantages such as anti-interference, low energy consumption, and low heat generation. Simultaneously, they demonstrate excellent biocompatibility, rendering them an ideal option for the next generation of artificial intelligence systems. Numerous experimental demonstrations of liquid-based memristors are reported, showcasing their unique memristive properties and novel neuromorphic functionalities. This review focuses on the recent developments in liquid-based memristors, discussing their operating mechanisms, structures, and functional characteristics. Additionally, the potential applications and development directions of liquid-based memristors in neuromorphic computing systems are proposed.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2402218"},"PeriodicalIF":10.7,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small MethodsPub Date : 2025-03-18DOI: 10.1002/smtd.202400818
Emmanuel V Péan, Jiashang Zhao, Alexander J Doolin, Rodrigo García-Rodríguez, Tom J Savenije, Matthew L Davies
{"title":"Advanced Characterization of Perovskite Thin Films for Solar Cell Applications Using Time-Resolved Microwave Photoconductivity and Time-Resolved Photoluminescence.","authors":"Emmanuel V Péan, Jiashang Zhao, Alexander J Doolin, Rodrigo García-Rodríguez, Tom J Savenije, Matthew L Davies","doi":"10.1002/smtd.202400818","DOIUrl":"https://doi.org/10.1002/smtd.202400818","url":null,"abstract":"<p><p>Thanks to their direct band-gap, high absorption coefficient, low manufacturing cost, and relative abundance of component materials, perovskite materials are strong candidates for the next generation of photovoltaic devices. However, their complex photochemistry and photophysics are hindering their development. This is due, in part, to the complex charge carrier recombination pathways in these materials, as well as their instability during measurements. Here, a new characterization methodology is detailed that allows the measurement, with high certainty, of the intrinsic parameters of a single perovskite sample, such as the trap state concentration and carrier mobilities. This methodology is based on a combination of time-resolved microwave photoconductivity (TRMC) and time-resolved photoluminescence (TRPL) spectroscopy. Compared to TRPL only, this methodology is faster, does not lead to significant changes in the perovskite properties over time, and increases the certainty of the parameters retrieved. Using this methodology, green solvent systems are studied to replace the traditional harmful solvents usually used when spin-coating perovskites. Although devices made using the greener solvents presented lower efficiencies, TRMC and TRPL measurements highlighted that the perovskites made with these solvents can achieve the same performance compared to the traditional solvent system.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2400818"},"PeriodicalIF":10.7,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Responsive Microneedles for Diagnostic and Therapeutic Applications of Ocular Diseases.","authors":"Baoyue Mi, Jingqing Mu, Xiangyu Ding, Shutao Guo, Xia Hua","doi":"10.1002/smtd.202402048","DOIUrl":"https://doi.org/10.1002/smtd.202402048","url":null,"abstract":"<p><p>Traditional ophthalmic formulations are characterized by low bioavailability, short intraocular retention time, strong irritation, and failure to achieve the expected therapeutic effect due to the special physiological structure of the eye and the existence of many barriers. Microneedle drug delivery is a novel transdermal drug delivery modality. Responsive microneedles are defined as controllably releasing the drug payloads in response to physiological stimuli, including pH levels, temperature, enzymes, and reactive oxygen species (ROS), as well as external stimuli such as magnetic fields and light. In addition to inheriting the advantages of traditional microneedles, which include enhanced targeting and permeability, non-invasiveness, and painless application, the integration with stimulus-responsive materials enables responsive microneedles to achieve a personalized precision drug delivery process, which further increases the accuracy and efficiency of ocular treatments, making on-demand drug delivery possible. This article systematically reviews the classification, mechanisms, and characteristics of responsive microneedles and provides a detailed introduction to their diagnostic and therapeutic applications as well as real-time monitoring potential in ocular diseases, aiming to offer insights for the precision treatment of ocular diseases in the future.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2402048"},"PeriodicalIF":10.7,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small MethodsPub Date : 2025-03-17DOI: 10.1002/smtd.202402124
Jingyuan Li, Ninghui Shao, Yongqing Zhang, Xingxin Liu, Hanbin Zhang, Liangfei Tian, Kiryl D Piatkevich, Delong Zhang, Hyeon Jeong Lee
{"title":"Screening of Vibrational Spectroscopic Voltage Indicator by Stimulated Raman Scattering Microscopy.","authors":"Jingyuan Li, Ninghui Shao, Yongqing Zhang, Xingxin Liu, Hanbin Zhang, Liangfei Tian, Kiryl D Piatkevich, Delong Zhang, Hyeon Jeong Lee","doi":"10.1002/smtd.202402124","DOIUrl":"https://doi.org/10.1002/smtd.202402124","url":null,"abstract":"<p><p>Genetically encoded voltage indicators (GEVIs) have significantly advanced voltage imaging, offering spatial details at cellular and subcellular levels not easily accessible with electrophysiology. In addition to fluorescence imaging, certain chemical bond vibrations are sensitive to membrane potential changes, presenting an alternative imaging strategy; however, challenges in signal sensitivity and membrane specificity highlight the need to develop vibrational spectroscopic GEVIs (vGEVIs) in mammalian cells. To address this need, a vGEVI screening approach is developed that employs hyperspectral stimulated Raman scattering (hSRS) imaging synchronized with an induced transmembrane voltage (ITV) stimulation, revealing unique spectroscopic signatures of sensors expressed on membranes. Specifically, by screening various rhodopsin-based voltage sensors in live mammalian cells, a characteristic peak associated with retinal bound to the sensor is identified in one of the GEVIs, Archon, which exhibited a 70 cm<sup>-1</sup> red shift relative to the membrane-bound retinal. Notably, this peak is responsive to changes in membrane potential. Overall, hSRS-ITV presents a promising platform for screening vGEVIs, paving the way for advancements in vibrational spectroscopic voltage imaging.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2402124"},"PeriodicalIF":10.7,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small MethodsPub Date : 2025-03-17DOI: 10.1002/smtd.202401715
Jean Spièce, Valentin Fonck, Charalambos Evangeli, Phil S Dobson, Jonathan M R Weaver, Pascal Gehring
{"title":"Direct Measurement of the Local Electrocaloric Effect in 2D α-In<sub>2</sub>Se<sub>3</sub> by Scanning Electrocaloric Thermometry.","authors":"Jean Spièce, Valentin Fonck, Charalambos Evangeli, Phil S Dobson, Jonathan M R Weaver, Pascal Gehring","doi":"10.1002/smtd.202401715","DOIUrl":"https://doi.org/10.1002/smtd.202401715","url":null,"abstract":"<p><p>The electrocaloric effect refers to the temperature change in a material when an electric field is applied or removed. Significant breakthroughs revealed its potential for solid-state cooling technologies in past decades. These devices offer a sustainable alternative to traditional vapor compression refrigeration, with advantages such as compactness, silent operation, and the absence of moving parts or refrigerants. Electrocaloric effects are typically studied using indirect methods based on polarization data, which suffer from inaccuracies related to assumptions about heat capacity. Direct methods, although more precise, require device fabrication and face challenges in studying meso- or nanoscale systems, like 2D materials, and materials with non-uniform polarization textures where high spatial resolution is required. In this study, a novel technique, Scanning Electrocaloric Thermometry, is introduced for characterizing the local electrocaloric effect in nanomaterials. This approach achieves high spatial resolution by locally applying electric fields and by simultaneously measuring the resulting temperature change. By employing AC excitation, the measurement sensitivity is further enhanced and the electrocaloric effect is disentangled from other heating mechanisms such as Joule heating and dielectric losses. The effectiveness of the method is demonstrated by examining electrocaloric and heat dissipation phenomena in 2D In<sub>2</sub>Se<sub>3</sub> micrometer-sized flakes poly(vinylidene fluoride-trifluoroethylene) films.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401715"},"PeriodicalIF":10.7,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small MethodsPub Date : 2025-03-17DOI: 10.1002/smtd.202500027
Shuang Ni, Yi-Tao Li, Xi Xu, Siyu Hou, Xingqiang Lü, Qing-Yuan Yang
{"title":"A Fluorinated Zinc-based Metal-Organic Framework for Efficient Separation of Butane Isomers via Pore Engineering.","authors":"Shuang Ni, Yi-Tao Li, Xi Xu, Siyu Hou, Xingqiang Lü, Qing-Yuan Yang","doi":"10.1002/smtd.202500027","DOIUrl":"https://doi.org/10.1002/smtd.202500027","url":null,"abstract":"<p><p>Separating n-butane/iso-butane is a challenging and energy-intensive task in the petrochemical industry. There have been only several adsorbents reported for C4 paraffins separation while they are confronted in real-world applications with either poor selectivity or low n-butane uptake capacity. In this study, a fluorinated zinc-based metal-organic framework (MOF), Znpyc-CF<sub>3</sub>, derived from Znpyc-CH<sub>3</sub> is developed, which has fluorine-containing functional groups on the pore surface that can enhance the interaction with the linear n-butane. Remarkably, this fluorinated porous material demonstrates both high n-butane uptake (55.5 cm<sup>3</sup> g⁻¹) and excellent selectivity (IAST selectivity = 187) at ambient temperature. Multicycle breakthrough experiments confirmed its practical performance for real gas mixtures. Znpyc-CF<sub>3</sub> exhibits outstanding stability, maintaining its structural integrity after repeated sorption cycles and dynamic breakthrough tests under both dry and highly humid conditions. The preferential adsorption mechanism of n-butane is further elucidated through Grand Canonical Monte Carlo (GCMC) simulations and Density Functional Theory (DFT) calculations. Overall, this research presents an efficient and stable adsorbent for the separation of butane isomers.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500027"},"PeriodicalIF":10.7,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small MethodsPub Date : 2025-03-17DOI: 10.1002/smtd.202500273
Hao Wang, Shuai Zhang, Zhiguo Xia
{"title":"Composition Modulation of Cs<sub>2</sub>ZrCl<sub>6</sub>-based Scintillator Film via Vapor Deposition for Large-Area X-Ray Imaging.","authors":"Hao Wang, Shuai Zhang, Zhiguo Xia","doi":"10.1002/smtd.202500273","DOIUrl":"https://doi.org/10.1002/smtd.202500273","url":null,"abstract":"<p><p>Metal halide scintillators for X-ray imaging have shown remarkable potential, however, achieving large-area film has been hindered by challenges in materials design and fabrication methods, particularly regarding composition uniformity for high-resolution imaging applications. Here, a multi-source vapor deposition (MSVD) method is employed to realize the facile composition modulation by designing MA<sup>+</sup> and Br<sup>-</sup> (MA<sup>+</sup> = methylammonium) co-doped Cs<sub>2</sub>ZrCl<sub>6</sub> (MCZCB) and further synthesizing a uniform and large-area scintillator film. The incorporation of MA<sup>+</sup> and Br<sup>-</sup> ions, with their slightly larger ionic radius, induces lattice distortion, enhancing the self-trapped excitons (STEs) luminescence of the MCZCB and significantly boosting the photoluminescence quantum yield (PLQY) from 70% in pristine Cs<sub>2</sub>ZrCl<sub>6</sub> (CZC) to an impressive 95%. Finally, a large-area of 100 cm<sup>2</sup> and 95% visible light transparent scintillator film is fabricated, achieving a spatial resolution of 25.1 lp mm<sup>-1</sup>. This result demonstrates that MSVD technology is promising as a practical strategy for fabricating large-area X-ray imaging film.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500273"},"PeriodicalIF":10.7,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}