Small MethodsPub Date : 2024-11-12DOI: 10.1002/smtd.202401486
Denis Gentili, Gabriele Calabrese, Eugenio Lunedei, Francesco Borgatti, Seyed A Mirshokraee, Vasiliki Benekou, Giorgio Tseberlidis, Alessio Mezzi, Fabiola Liscio, Andrea Candini, Giampiero Ruani, Vincenzo Palermo, Francesco Maccherozzi, Maurizio Acciarri, Enrico Berretti, Carlo Santoro, Alessandro Lavacchi, Massimiliano Cavallini
{"title":"Tuning Electronic and Functional Properties in Defected MoS<sub>2</sub> Films by Surface Patterning of Sulphur Atomic Vacancies.","authors":"Denis Gentili, Gabriele Calabrese, Eugenio Lunedei, Francesco Borgatti, Seyed A Mirshokraee, Vasiliki Benekou, Giorgio Tseberlidis, Alessio Mezzi, Fabiola Liscio, Andrea Candini, Giampiero Ruani, Vincenzo Palermo, Francesco Maccherozzi, Maurizio Acciarri, Enrico Berretti, Carlo Santoro, Alessandro Lavacchi, Massimiliano Cavallini","doi":"10.1002/smtd.202401486","DOIUrl":"https://doi.org/10.1002/smtd.202401486","url":null,"abstract":"<p><p>Defects are inherent in transition metal dichalcogenides and significantly affect their chemical and physical properties. In this study, surface defect electrochemical nanopatterning is proposed as a promising method to tune in a controlled manner the electronic and functional properties of defective MoS₂ thin films. Using parallel electrochemical nanolithography, MoS₂ thin films are patterned, creating sulphur vacancy-rich active zones alternated with defect-free regions over a centimetre scale area, with sub-micrometre spatial resolution. The patterned films display tailored optical and electronic properties due to the formation of sulphur vacancy-rich areas. Moreover, the effectiveness of defect nanopatterning in tuning functional properties is demonstrated by studying the electrocatalytic activity for the hydrogen evolution reaction.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401486"},"PeriodicalIF":10.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Engineering MXene Surface via Oxygen Functionalization and Au Nanoparticle Deposition for Enhanced Electrocatalytic Hydrogen Evolution Reaction.","authors":"Mengrui Li, Xiaoxiao Dong, Qinzhu Li, Yaru Liu, Shuang Cao, Chun-Chao Hou, Tong Sun","doi":"10.1002/smtd.202401569","DOIUrl":"https://doi.org/10.1002/smtd.202401569","url":null,"abstract":"<p><p>MXene, a family of 2D transition metal carbides and nitrides, presents promising applications in electrocatalysis. Maximizing its large surface area is key to developing efficient non-noble-metal catalysts for the hydrogen evolution reaction (HER). In this study, oxygen-functionalized Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene (Ti<sub>3</sub>C<sub>2</sub>O<sub>x</sub>) is synthesized and deposited gold nanoparticles (Au NPs) onto it, forming a novel composite material, Au-Ti<sub>3</sub>C<sub>2</sub>O<sub>x</sub>. By selectively removing other functional groups, mainly -O functional groups are retained on the surface, directing electron transfer from Au NPs to MXene due to electronic metal-support interaction (EMSI), thereby improving the catalytic activity of the MXene surface. Additionally, the interaction between Au NPs and -O functional groups further enhanced the overall catalytic activity, achieving an overpotential of 62 mV and a Tafel slope of 40.1 mV dec<sup>-1</sup> at a current density of -10 mA cm<sup>-2</sup> in 0.5 m H<sub>2</sub>SO<sub>4</sub> solution. Density functional theory calculations and scanning electrochemical microscopy with ≤150 nm resolution confirmed the enhanced catalytic efficiency due to the specific interaction between Au NPs and Ti<sub>3</sub>C<sub>2</sub>O<sub>x</sub>. This work provides a surface modification strategy to fully utilize the MXene surface and enhance the overall catalytic activity of MXene-based catalysts.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401569"},"PeriodicalIF":10.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Soft Colloidal Electrode Enabled by Water Distribution Control for Ultra-Stable Aqueous Zn-I Batteries.","authors":"Kaiqiang Zhang, Chao Wu, Luoya Wang, Changlong Ma, Jilei Ye, Yuping Wu","doi":"10.1002/smtd.202401187","DOIUrl":"https://doi.org/10.1002/smtd.202401187","url":null,"abstract":"<p><p>Designing effective electrode material is crucial for developing ultra-long lifetime batteries, thereby reducing daily battery costs. Current electrode materials are typically solid or liquid state, with an intermediate colloidal state offering the advantages of fixed redox-active species, akin to solid-state materials, and the absence of rigid atomic structure, akin to liquid-state materials, while avoiding the particle pulverization and uncontrolled migration. Herein, an aqueous Zn||Pluronic F127 (PF127)/ZnI<sub>2</sub> colloid battery is developed utilizing the inherent water molecular control effect of ZnSO<sub>4</sub>. In this system, ZnSO<sub>4</sub> in the electrolyte acts as a water molecular valve, regulating the water content within the PF127 polymer to form a PF127 colloid. The resulting aqueous Zn||PF127/ZnI<sub>2</sub> colloid battery exhibits an ultra-long cycling lifetime and compatibility with various simulated and practical operating conditions, highlighting its potential for practical applications. Additionally, this battery design concept offers a platform for constructing ultra-stable aqueous batteries.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401187"},"PeriodicalIF":10.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small MethodsPub Date : 2024-11-12DOI: 10.1002/smtd.202401179
Stephan Ruck, Andreas Hutzler, Simon Thiele, Chuyen van Pham
{"title":"Highly Active NiRu/C Cathode Catalyst Synthesized by Displacement Reaction for Anion Exchange Membrane Water Electrolysis.","authors":"Stephan Ruck, Andreas Hutzler, Simon Thiele, Chuyen van Pham","doi":"10.1002/smtd.202401179","DOIUrl":"https://doi.org/10.1002/smtd.202401179","url":null,"abstract":"<p><p>Anion exchange membrane water electrolysis (AEMWE) is highly promising for cost-effective green hydrogen production due to its basic operating conditions facilitating the use of non-noble catalysts. While non-noble Ni/Fe-based catalysts are utilized at the anode, its cathode catalyst still requires precious Pt. Due to the high cost of Pt and the sluggish hydrogen evolution reaction (HER) at the cathode in basic conditions, developing alternative catalysts to replace Pt is highly important. Here, a synthesis procedure for a Ru-based catalyst is reported and its high activity toward the HER in alkaline media is demonstrated in both half-cell and single-cell tests. The catalyst is synthesized in a two-step approach. A highly dispersed Ni catalyst is prepared on carbon support in the first step. In the second step, Ru is deposited on its surface using a galvanic displacement reaction. The uniqueness of this method is that Ru is deposited over the entire electrically conductive surface, resulting in an isotropic and homogeneous Ru distribution within the catalyst powder. It is demonstrated that this material remarkably outperforms state-of-the-art Pt/C catalysts in half-cell and single-cell tests. The single cell only requires 1.73 V at 1 A cm<sup>-2</sup> with an overall PGM content of 0.05 mg cm<sup>-2</sup>.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401179"},"PeriodicalIF":10.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small MethodsPub Date : 2024-11-11DOI: 10.1002/smtd.202401113
Doron Yesodi, Adi Katz, Yossi Weizmann
{"title":"Advancing Topoisomerase Research Using DNA Nanotechnology.","authors":"Doron Yesodi, Adi Katz, Yossi Weizmann","doi":"10.1002/smtd.202401113","DOIUrl":"https://doi.org/10.1002/smtd.202401113","url":null,"abstract":"<p><p>In this Perspective, the use of DNA nanotechnology is explored as a powerful tool for studying a family of enzymes known as topoisomerases. These enzymes regulate DNA topology within a living cell and play a major role in the pharmaceutical field, serving as anti-cancer and anti-bacterial targets. This Perspective will provide a short historical overview of the methods employed in studying these enzymes and emphasizing recent advancements in assays using DNA nanotechnology. These innovations have substantially improved accuracy and expanded the understanding of enzyme activity. This perspective will showcase the versatile utility of DNA nanotechnology in advancing scientific knowledge and its application in exploring new drug candidates, particularly in the study of topoisomerase enzymes.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401113"},"PeriodicalIF":10.7,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small MethodsPub Date : 2024-11-10DOI: 10.1002/smtd.202401379
Haitao Xu, Hao Zhang, Yan Luo, Jingzhe Zhao, Feng Li
{"title":"NH<sub>4</sub>Cl-Assisted Electrosynthesis of P-Doped Co(OH)<sub>2</sub> Nanosheet on Cu<sub>2</sub>S Hollow Nanotube Arrays for Glycerol Electrooxidation.","authors":"Haitao Xu, Hao Zhang, Yan Luo, Jingzhe Zhao, Feng Li","doi":"10.1002/smtd.202401379","DOIUrl":"https://doi.org/10.1002/smtd.202401379","url":null,"abstract":"<p><p>The glycerol oxidation reaction (GOR) for producing high-value-added organic compounds is of great research interest due to its potential in alleviating the energy crisis. Herein, a facile NH<sub>4</sub>Cl-assisted electrodeposition strategy is reported to fabricate 3D nano-forest array-like hollow nanostructures. The hierarchical heterojunction by combining phosphorus doping Co(OH)<sub>2</sub> nanosheets with Cu<sub>2</sub>S nanotube arrays (P-Co(OH)<sub>2</sub>@Cu<sub>2</sub>S NTs/CF) is developed to realize the optimization on GOR. The optimized P-Co(OH)<sub>2</sub>@Cu<sub>2</sub>S NTs/CF catalyst exhibits an exceptional activity with a formate Faradaic efficiency (FE) of 97.40% at a potential of 1.30 V (vs RHE). The experimental results indicate that this unique hollow nano-forest structure, grown on a conductive support, can expose more active sites and facilitate electron transfer, thereby demonstrating excellent GOR performance. This work provides new opportunities for the design of electrocatalysts of high-activity and low-cost hollow heterostructure electrocatalysts for glycerol electrooxidation.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401379"},"PeriodicalIF":10.7,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small MethodsPub Date : 2024-11-10DOI: 10.1002/smtd.202401302
Jie Guo, Qinghua Gao, Fei Gao, Chuancheng Jia, Xuefeng Guo
{"title":"Understanding the Spin of Metal Complexes from a Single-Molecule Perspective.","authors":"Jie Guo, Qinghua Gao, Fei Gao, Chuancheng Jia, Xuefeng Guo","doi":"10.1002/smtd.202401302","DOIUrl":"https://doi.org/10.1002/smtd.202401302","url":null,"abstract":"<p><p>Compared with aggregate spin behavior, single-molecule spin behavior can be accurately understood, controlled, and applied at the level of basic building blocks. The potential of single-molecule electronic and nuclear spins for monitoring and control represents a beacon of promise for the advancement of molecular spin devices, which are fabricated by connecting a single molecule between two electrodes. Metal complexes, celebrated for their superior magnetic attributes, are widely used in the devices to explore spin effects. Moreover, single-molecule electrical techniques with high signal-to-noise ratio, temporal resolution, and reliability help to understand the spin characteristics. In this review, the focus is on the devices with metal complexes, especially single-molecule magnets, and systematically present experimental and theoretical state of the art of this field at the single-molecule level, including the fundamental concepts of the electronic and nuclear spin and their basic spin effects. Then, several experimental methods developed to regulate the spin characteristics of metal complexes at single-molecule level are introduced, as well as the corresponding intrinsic mechanisms. A brief discussion is provided on the comprehensive applications and the considerable challenges of single-molecule spin devices in detail, along with a prospect on the potential future directions of this field.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401302"},"PeriodicalIF":10.7,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small MethodsPub Date : 2024-11-10DOI: 10.1002/smtd.202401373
Qiaomu Wang, Peng Wang, Yandong Wang, Yang Xu, Haocheng Xu, Kai Xi
{"title":"A Versatile Method for Preparation of BrCOFs Aerogels and Efficient Functionalization via Suzuki-Miyaura Reaction.","authors":"Qiaomu Wang, Peng Wang, Yandong Wang, Yang Xu, Haocheng Xu, Kai Xi","doi":"10.1002/smtd.202401373","DOIUrl":"https://doi.org/10.1002/smtd.202401373","url":null,"abstract":"<p><p>Covalent organic frameworks (COFs) aerogels solve the restrictions on processability and application caused by the insolubility and non-fusibility of powders while avoiding the inaccessibility of pore structures by dense stacking. At the current start-up stage where COFs aerogels are scarce and difficult to synthesize, design of generalized synthetic methods play an indispensable role in guiding and developing COFs aerogels. Moreover, evolving the functionality of COF aerogels is equal vital, which achieves higher performance and broader practical applications. In this work, for the first time, processable BrCOFs aerogels have been synthesized without vacuum by seven kind polar solvents, which realizes general preparation of BrCOFs aerogels. It is extremely friendly to the inapplicability for some scenarios. Furthermore, by Suzuki-Miyaura cross-coupling reaction, BrCOFs aerogels are endows with cyano groups (-CN), trifluoromethyl (-CF<sub>3</sub>) and methyl sulfonyl (-SO<sub>2</sub>-CH<sub>3</sub>) efficiently. As a proof-of-concept, BrCOFs-SO<sub>2</sub>-CH<sub>3</sub> aerogels served as a quasi-solid electrolyte for lithium-metal batteries (LMBs), which effectively enhance the performance of batteries.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401373"},"PeriodicalIF":10.7,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small MethodsPub Date : 2024-11-10DOI: 10.1002/smtd.202401224
Linke Huang, Zachary Gariepy, Ethan Halpren, Li Du, Chung Hsuan Shan, Chuncheng Yang, Zhi Wen Chen, Chandra Veer Singh
{"title":"Bayesian Learning Aided Theoretical Optimization of IrPdPtRhRu High Entropy Alloy Catalysts for the Hydrogen Evolution Reaction.","authors":"Linke Huang, Zachary Gariepy, Ethan Halpren, Li Du, Chung Hsuan Shan, Chuncheng Yang, Zhi Wen Chen, Chandra Veer Singh","doi":"10.1002/smtd.202401224","DOIUrl":"https://doi.org/10.1002/smtd.202401224","url":null,"abstract":"<p><p>The complex compositional space of high entropy alloys (HEAs) has shown a great potential to reduce the cost and further increase the catalytic activity for hydrogen evolution reaction (HER) by compositional optimization. Without uncovering the specifics of the HER mechanism on a given HEA surface, it is unfeasible to apply compositional modifications to enhance the performance and save costs. In this work, a combination of density functional theory and Bayesian machine learning is used to demonstrate the unique catalytic mechanism of IrPdPtRhRu HEA catalysts for HER. At high coverage of underpotential-deposited hydrogen, a d-band investigation of the active sites of the HEA surface is conducted to elucidate the superior catalytic performance through electronic interactions between elements. At low coverage, a novel Bayesian learning with oversampling approach is then outlined to optimize the HEA composition for performance improvement and cost reduction. This approach proves more efficacious and efficient and yields higher-quality structures with less training set bias compared with neural-network optimization. The proposed HEA optimization theoretically outperforms benchmark Pt catalysts' overpotential by ≈40% at a 15% reduced synthesis cost comparing to the equiatomic ratio HEA.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401224"},"PeriodicalIF":10.7,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"FeOOH Quantum Dots Assembled MXene-Decorated 3D Photothermal Evaporator for Synergy Application in Solar Evaporation and Fenton Degradation.","authors":"Yifan Liu, Deke Li, Guangyi Tian, Chenggong Xu, Xionggang Chen, Jinxia Huang, Zhiguang Guo","doi":"10.1002/smtd.202401541","DOIUrl":"https://doi.org/10.1002/smtd.202401541","url":null,"abstract":"<p><p>Solar-driven water evaporation is considered as the sustainable approach to alleviate freshwater resource crisis through direct use of solar energy. However, it is still challenging to achieve the multifunctional solar evaporators equipped with both high evaporation and purification performance to handle practical complex wastewater. Here, a simple and cost-effective multifunctional 3D solar evaporator is prepared by alternately decorating the commercial sponge with FeOOH quantum dots (FQDs) supported MXene sheets composites and chitosan hydrogel coatings for enabling the solar water evaporation and organic wastewater photodegradation simultaneously. MXene composites allow the solar evaporator with excellent photothermal conversion performance, the hydrophilic chitosan hydrogel coated interconnecting skeleton structures of sponge serve as the mass transfer and water transport channels. The Fenton-catalytic FQDs anchored on the MXene sheets surface accept the photo-generated electrons of MXene sheets to induce the organic pollutant photo-Fenton degradation reaction under sunlight irradiation. The resulting evaporator possesses both excellent water evaporation rate of 2.54 kg m<sup>-2</sup> h<sup>-1</sup> and high degradation efficiency (99.24% for methylene blue), coupled with durable salt-resisting performance during long-term seawater desalination (20 wt.% NaCl). This work provides a simple and feasible strategy for designing multifunctional solar evaporators to meet the potential application scenarios in practice.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401541"},"PeriodicalIF":10.7,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}