Yiwen Su, Shurong Li, XinZhong Wang, Jiashu Chen, Fujing Xu, Lehlogonolo Rudolf Kanyane, Nicholus Malatji, Jing Yang, Guangping Zheng
{"title":"Application of High-Entropy Materials in Promoting Electrocatalytic Nitrogen Cycle.","authors":"Yiwen Su, Shurong Li, XinZhong Wang, Jiashu Chen, Fujing Xu, Lehlogonolo Rudolf Kanyane, Nicholus Malatji, Jing Yang, Guangping Zheng","doi":"10.1002/smtd.202501303","DOIUrl":null,"url":null,"abstract":"<p><p>Nitrogen cycle is a fundamental biogeochemical loop existed for millions of years, which involves the transformation of nitrogen-containing chemicals in the environment. However, human activities, especially those since the Industrial Revolution, have significantly disrupted this balance, leading to environmental and energy challenges. Electrocatalysis nitrogen cycle (ENC) offers a promising alternative for the sustainable transformation of nitrogen compounds en route toward rebalancing, with reactions such as the electrocatalytic nitrogen reduction reaction (eNRR) and nitrate/nitrite reduction reaction (eNO<sub>3</sub>RR/eNO<sub>2</sub>RR) emerging as sustainable alternatives to the traditional Haber-Bosch process. However, conventional catalysts are handicapped by instability and linear scaling relationships. High-entropy materials (HEM), characterized by a high entropy of mixing due to the presence of multiple principal elements in nearly equal proportions, have garnered significant attention due to the synergistic effects among different elements, making them attractive candidates for applications in ENC. This review delves into the realm of HEMs and their applications in ENC, which elucidates the nitrogen cycle, the issues of conventional catalysts, definition of HEMs, and their employment in the ENC process. Critical characterizations, especially in situ technologies, are highlighted, and the prospects in this emerging field are discussed. This review could be a reference for future development of HEMs in catalysis.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e01303"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202501303","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nitrogen cycle is a fundamental biogeochemical loop existed for millions of years, which involves the transformation of nitrogen-containing chemicals in the environment. However, human activities, especially those since the Industrial Revolution, have significantly disrupted this balance, leading to environmental and energy challenges. Electrocatalysis nitrogen cycle (ENC) offers a promising alternative for the sustainable transformation of nitrogen compounds en route toward rebalancing, with reactions such as the electrocatalytic nitrogen reduction reaction (eNRR) and nitrate/nitrite reduction reaction (eNO3RR/eNO2RR) emerging as sustainable alternatives to the traditional Haber-Bosch process. However, conventional catalysts are handicapped by instability and linear scaling relationships. High-entropy materials (HEM), characterized by a high entropy of mixing due to the presence of multiple principal elements in nearly equal proportions, have garnered significant attention due to the synergistic effects among different elements, making them attractive candidates for applications in ENC. This review delves into the realm of HEMs and their applications in ENC, which elucidates the nitrogen cycle, the issues of conventional catalysts, definition of HEMs, and their employment in the ENC process. Critical characterizations, especially in situ technologies, are highlighted, and the prospects in this emerging field are discussed. This review could be a reference for future development of HEMs in catalysis.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.