面向高效电fenton氧化的相控多元素氧化物-硫化物异质结构。

IF 9.1 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yemima Purba, Fitri Nur Indah Sari, Xuan-Yu Wei, Yen-Hsun Su, Jyh-Ming Ting
{"title":"面向高效电fenton氧化的相控多元素氧化物-硫化物异质结构。","authors":"Yemima Purba, Fitri Nur Indah Sari, Xuan-Yu Wei, Yen-Hsun Su, Jyh-Ming Ting","doi":"10.1002/smtd.202501652","DOIUrl":null,"url":null,"abstract":"<p><p>Electron Fenton (EF) degradation often suffers from low in situ H<sub>2</sub>O<sub>2</sub> electrosynthesis and Fe<sup>2+</sup> regeneration. Herein, a novel multi-element oxide-sulfide heterostructure is reported, (FeVCoCuMn)<sub>2</sub>O<sub>3</sub>/(CuFeVCoMn)S, for efficient and stable EF degradation. The oxide-sulfide phase ratio is optimized through temperature control during the synthesis. Experimental data and theoretical calculations highlight the advantages of multi-metal doping in enhancing the H<sub>2</sub>O<sub>2</sub> selectivity and Fe<sup>2</sup>⁺ regeneration. The multi-element oxide-sulfide heterostructure outperforms its subsystems by providing enhanced H<sub>2</sub>O<sub>2</sub> electrosynthesis. Among the elements, the Cu, Co, Mn, V, and S donate electrons to the trivalent Fe<sup>3</sup>⁺ cations, thus enhancing the Fe<sup>2</sup>⁺ regeneration. Density functional theory calculations show that the characteristics of the heterostructure can be optimized based on the phase ratio, resulting in enhanced charge transfer and optimized intermediate binding strength. The (FeVCoCuMn)<sub>2</sub>O<sub>3</sub>/(CuFeVCoMn)S catalyst achieves 98% tetracycline degradation in 120 min and maintains 87% efficiency over ten cycles. This work provides an insight into the coexistence of multi-metal doping and heterostructure in obtaining an efficient and selective heterogeneous EF catalyst for wastewater treatment.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e01652"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase-Controlled Multi-Element Oxide-Sulfide Heterostructure Toward High-Efficiency Electro-Fenton Oxidation.\",\"authors\":\"Yemima Purba, Fitri Nur Indah Sari, Xuan-Yu Wei, Yen-Hsun Su, Jyh-Ming Ting\",\"doi\":\"10.1002/smtd.202501652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electron Fenton (EF) degradation often suffers from low in situ H<sub>2</sub>O<sub>2</sub> electrosynthesis and Fe<sup>2+</sup> regeneration. Herein, a novel multi-element oxide-sulfide heterostructure is reported, (FeVCoCuMn)<sub>2</sub>O<sub>3</sub>/(CuFeVCoMn)S, for efficient and stable EF degradation. The oxide-sulfide phase ratio is optimized through temperature control during the synthesis. Experimental data and theoretical calculations highlight the advantages of multi-metal doping in enhancing the H<sub>2</sub>O<sub>2</sub> selectivity and Fe<sup>2</sup>⁺ regeneration. The multi-element oxide-sulfide heterostructure outperforms its subsystems by providing enhanced H<sub>2</sub>O<sub>2</sub> electrosynthesis. Among the elements, the Cu, Co, Mn, V, and S donate electrons to the trivalent Fe<sup>3</sup>⁺ cations, thus enhancing the Fe<sup>2</sup>⁺ regeneration. Density functional theory calculations show that the characteristics of the heterostructure can be optimized based on the phase ratio, resulting in enhanced charge transfer and optimized intermediate binding strength. The (FeVCoCuMn)<sub>2</sub>O<sub>3</sub>/(CuFeVCoMn)S catalyst achieves 98% tetracycline degradation in 120 min and maintains 87% efficiency over ten cycles. This work provides an insight into the coexistence of multi-metal doping and heterostructure in obtaining an efficient and selective heterogeneous EF catalyst for wastewater treatment.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e01652\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202501652\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202501652","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

电子芬顿(EF)降解通常受到低原位H2O2电合成和Fe2+再生的影响。本文报道了一种新的多元素氧化硫化物异质结构(fevcomn)2O3/(CuFeVCoMn)S,用于高效稳定地降解EF。在合成过程中通过温度控制优化了氧化硫化物的相比。实验数据和理论计算突出了多金属掺杂在提高H2O2选择性和Fe2 +再生方面的优势。多元素氧化物-硫化物异质结构通过提供增强的H2O2电合成而优于其子系统。其中Cu、Co、Mn、V和S给三价Fe3 +阳离子提供电子,增强了Fe2 +的再生能力。密度泛函理论计算表明,基于相比可以优化异质结构的特性,从而增强电荷转移和优化中间结合强度。(fevcomn)2O3/(CuFeVCoMn)S催化剂在120 min内降解98%的四环素,在10次循环中保持87%的效率。本研究揭示了多金属掺杂和异质结构共存的特点,为废水处理提供了一种高效、选择性的多相EF催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase-Controlled Multi-Element Oxide-Sulfide Heterostructure Toward High-Efficiency Electro-Fenton Oxidation.

Electron Fenton (EF) degradation often suffers from low in situ H2O2 electrosynthesis and Fe2+ regeneration. Herein, a novel multi-element oxide-sulfide heterostructure is reported, (FeVCoCuMn)2O3/(CuFeVCoMn)S, for efficient and stable EF degradation. The oxide-sulfide phase ratio is optimized through temperature control during the synthesis. Experimental data and theoretical calculations highlight the advantages of multi-metal doping in enhancing the H2O2 selectivity and Fe2⁺ regeneration. The multi-element oxide-sulfide heterostructure outperforms its subsystems by providing enhanced H2O2 electrosynthesis. Among the elements, the Cu, Co, Mn, V, and S donate electrons to the trivalent Fe3⁺ cations, thus enhancing the Fe2⁺ regeneration. Density functional theory calculations show that the characteristics of the heterostructure can be optimized based on the phase ratio, resulting in enhanced charge transfer and optimized intermediate binding strength. The (FeVCoCuMn)2O3/(CuFeVCoMn)S catalyst achieves 98% tetracycline degradation in 120 min and maintains 87% efficiency over ten cycles. This work provides an insight into the coexistence of multi-metal doping and heterostructure in obtaining an efficient and selective heterogeneous EF catalyst for wastewater treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信