全干法合成LiNi0.6Mn0.3Co0.1O2和LiNi0.7Mn0.3O2的原位加热x射线衍射

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Svena Yu, Toby Bond, Al Rahemtulla, Adam F G Leontowich, Daphne Thompson, J R Dahn
{"title":"全干法合成LiNi0.6Mn0.3Co0.1O2和LiNi0.7Mn0.3O2的原位加热x射线衍射","authors":"Svena Yu, Toby Bond, Al Rahemtulla, Adam F G Leontowich, Daphne Thompson, J R Dahn","doi":"10.1002/smtd.202500632","DOIUrl":null,"url":null,"abstract":"<p><p>In-situ synthesis X-ray diffraction is conducted at the Canadian Light Source to probe phase changes during the all-dry synthesis of LiNi<sub>0.6</sub>Mn<sub>0.3</sub>Co<sub>0.1</sub>O<sub>2</sub> (NMC631) and LiNi<sub>0.7</sub>Mn<sub>0.3</sub>O<sub>2</sub> (NM73) made using either LiOH·H<sub>2</sub>O or Li<sub>2</sub>CO<sub>3</sub>. All materials are heated up to 950 °C and held for one hour at 950 °C under flowing oxygen. The pathway to a layered phase is similar for all samples. First, a lithiated manganese oxide phase is formed at low temperature, then cations are incorporated into a rock salt phase from ≈420 °C. A spinel intermediary phase is formed before cation ordering occurs between Li and transition metal ions above 800 °C, giving rise to the intended layered hexagonal structure. Amongst the three materials tested, the layered phase of NMC631 (made using LiOH·H<sub>2</sub>O) evolves at the lowest temperature of ≈820 °C and refines rapidly during the high temperature hold. The melting of LiOH coincides nicely with the oxidation of Ni, which forms the basis for the rock salt structure. It is postulated that the molten LiOH facilitates cation diffusion into the rock salt phase, allowing for an earlier formation of the layered phase in comparison to using Li<sub>2</sub>CO<sub>3</sub>, which has a higher decomposition temperature.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500632"},"PeriodicalIF":10.7000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-Situ Heating X-Ray Diffraction of LiNi<sub>0.6</sub>Mn<sub>0.3</sub>Co<sub>0.1</sub>O<sub>2</sub> and LiNi<sub>0.7</sub>Mn<sub>0.3</sub>O<sub>2</sub> Made Using the All-Dry Synthesis Process.\",\"authors\":\"Svena Yu, Toby Bond, Al Rahemtulla, Adam F G Leontowich, Daphne Thompson, J R Dahn\",\"doi\":\"10.1002/smtd.202500632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In-situ synthesis X-ray diffraction is conducted at the Canadian Light Source to probe phase changes during the all-dry synthesis of LiNi<sub>0.6</sub>Mn<sub>0.3</sub>Co<sub>0.1</sub>O<sub>2</sub> (NMC631) and LiNi<sub>0.7</sub>Mn<sub>0.3</sub>O<sub>2</sub> (NM73) made using either LiOH·H<sub>2</sub>O or Li<sub>2</sub>CO<sub>3</sub>. All materials are heated up to 950 °C and held for one hour at 950 °C under flowing oxygen. The pathway to a layered phase is similar for all samples. First, a lithiated manganese oxide phase is formed at low temperature, then cations are incorporated into a rock salt phase from ≈420 °C. A spinel intermediary phase is formed before cation ordering occurs between Li and transition metal ions above 800 °C, giving rise to the intended layered hexagonal structure. Amongst the three materials tested, the layered phase of NMC631 (made using LiOH·H<sub>2</sub>O) evolves at the lowest temperature of ≈820 °C and refines rapidly during the high temperature hold. The melting of LiOH coincides nicely with the oxidation of Ni, which forms the basis for the rock salt structure. It is postulated that the molten LiOH facilitates cation diffusion into the rock salt phase, allowing for an earlier formation of the layered phase in comparison to using Li<sub>2</sub>CO<sub>3</sub>, which has a higher decomposition temperature.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2500632\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202500632\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500632","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在加拿大光源下进行原位合成x射线衍射,探测用LiOH·H2O或Li2CO3制备LiNi0.6Mn0.3Co0.1O2 (NMC631)和LiNi0.7Mn0.3O2 (NM73)的全干合成过程中的相变化。所有材料被加热到950°C,并在950°C的流动氧气下保持一小时。对于所有样品,层状相的路径是相似的。首先,在低温下形成锂化锰氧化物相,然后在≈420°C时将阳离子并入岩盐相。在800℃以上,在Li和过渡金属离子之间发生阳离子有序之前形成尖晶石中间相,从而产生预期的层状六边形结构。在测试的三种材料中,NMC631(由LiOH·H2O制成)的层状相在最低温度≈820℃时形成,并在高温保持期间迅速细化。LiOH的熔化与Ni的氧化恰好吻合,形成了岩盐结构的基础。据推测,熔融的LiOH有利于阳离子扩散到岩盐相,与使用Li2CO3相比,可以更早地形成层状相,Li2CO3具有更高的分解温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In-Situ Heating X-Ray Diffraction of LiNi0.6Mn0.3Co0.1O2 and LiNi0.7Mn0.3O2 Made Using the All-Dry Synthesis Process.

In-situ synthesis X-ray diffraction is conducted at the Canadian Light Source to probe phase changes during the all-dry synthesis of LiNi0.6Mn0.3Co0.1O2 (NMC631) and LiNi0.7Mn0.3O2 (NM73) made using either LiOH·H2O or Li2CO3. All materials are heated up to 950 °C and held for one hour at 950 °C under flowing oxygen. The pathway to a layered phase is similar for all samples. First, a lithiated manganese oxide phase is formed at low temperature, then cations are incorporated into a rock salt phase from ≈420 °C. A spinel intermediary phase is formed before cation ordering occurs between Li and transition metal ions above 800 °C, giving rise to the intended layered hexagonal structure. Amongst the three materials tested, the layered phase of NMC631 (made using LiOH·H2O) evolves at the lowest temperature of ≈820 °C and refines rapidly during the high temperature hold. The melting of LiOH coincides nicely with the oxidation of Ni, which forms the basis for the rock salt structure. It is postulated that the molten LiOH facilitates cation diffusion into the rock salt phase, allowing for an earlier formation of the layered phase in comparison to using Li2CO3, which has a higher decomposition temperature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信