微尺寸SiOx阳极增强锂存储的模量工程硅酸盐缓冲矩阵。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Tuan Lv, Feng Zhou, Yang He, Yingxi Zhang, Haoqin Feng, Yu Liu, Xianwei Yu, Biao Gao, Paul K Chu, Kaifu Huo
{"title":"微尺寸SiOx阳极增强锂存储的模量工程硅酸盐缓冲矩阵。","authors":"Tuan Lv, Feng Zhou, Yang He, Yingxi Zhang, Haoqin Feng, Yu Liu, Xianwei Yu, Biao Gao, Paul K Chu, Kaifu Huo","doi":"10.1002/smtd.202500556","DOIUrl":null,"url":null,"abstract":"<p><p>Microscale Silicon suboxide (SiO<sub>x</sub>) is a promising anode material and elemental doping is an effective strategy to enhance the initial coulombic efficiency (ICE) and cycle stability of SiO<sub>x</sub> by converting SiO<sub>2</sub> into the electrochemically inert silicates-buffering matrix. However, the impact of the silicates-buffering modulus on the electrochemical properties is not well understood. Herein, the modulus of the silicate-buffering matrix is found to be crucial to restraining internal cracks and improving the electrochemical properties of microscale SiO<sub>x</sub> during cycling. Compared with the Li<sub>2</sub>SiO<sub>3</sub> and MgSiO<sub>3</sub> buffering matrixes, Mg<sub>2</sub>SiO<sub>4</sub> has a higher modulus and yield stress resulting in better resistance to Si expansion-induced cracks during cycling. Moreover, Mg<sub>2</sub>SiO<sub>4</sub> has a smaller Li<sup>+</sup> diffusion energy barrier than Li<sub>2</sub>SiO<sub>3</sub> and MgSiO<sub>3</sub>. Consequently, the microscale Mg-doped SiO<sub>x</sub> with the Mg<sub>2</sub>SiO<sub>4</sub> buffering matrix has a high ICE, excellent structural integrity, and small electrode expansion during cycling. The results provide insights into the design of microscale SiO<sub>x</sub> anode materials by optimizing the silicates-buffering matrix for high-energy Li-ion batteries.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500556"},"PeriodicalIF":10.7000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulus-Engineered Silicates-Buffering Matrix for Enhanced Lithium Storage of Micro-Sized SiO<sub>x</sub> Anodes.\",\"authors\":\"Tuan Lv, Feng Zhou, Yang He, Yingxi Zhang, Haoqin Feng, Yu Liu, Xianwei Yu, Biao Gao, Paul K Chu, Kaifu Huo\",\"doi\":\"10.1002/smtd.202500556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microscale Silicon suboxide (SiO<sub>x</sub>) is a promising anode material and elemental doping is an effective strategy to enhance the initial coulombic efficiency (ICE) and cycle stability of SiO<sub>x</sub> by converting SiO<sub>2</sub> into the electrochemically inert silicates-buffering matrix. However, the impact of the silicates-buffering modulus on the electrochemical properties is not well understood. Herein, the modulus of the silicate-buffering matrix is found to be crucial to restraining internal cracks and improving the electrochemical properties of microscale SiO<sub>x</sub> during cycling. Compared with the Li<sub>2</sub>SiO<sub>3</sub> and MgSiO<sub>3</sub> buffering matrixes, Mg<sub>2</sub>SiO<sub>4</sub> has a higher modulus and yield stress resulting in better resistance to Si expansion-induced cracks during cycling. Moreover, Mg<sub>2</sub>SiO<sub>4</sub> has a smaller Li<sup>+</sup> diffusion energy barrier than Li<sub>2</sub>SiO<sub>3</sub> and MgSiO<sub>3</sub>. Consequently, the microscale Mg-doped SiO<sub>x</sub> with the Mg<sub>2</sub>SiO<sub>4</sub> buffering matrix has a high ICE, excellent structural integrity, and small electrode expansion during cycling. The results provide insights into the design of microscale SiO<sub>x</sub> anode materials by optimizing the silicates-buffering matrix for high-energy Li-ion batteries.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2500556\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202500556\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500556","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

微尺度的亚氧化硅(SiOx)是一种很有前途的阳极材料,元素掺杂是通过将SiO2转化为电化学惰性的硅酸盐缓冲基质来提高SiOx的初始库仑效率(ICE)和循环稳定性的有效策略。然而,硅酸盐缓冲模量对电化学性能的影响尚不清楚。研究发现,在循环过程中,硅酸盐缓冲基体的模量对于抑制内部裂纹和改善微尺度SiOx的电化学性能至关重要。与Li2SiO3和MgSiO3缓冲基体相比,Mg2SiO4具有更高的模量和屈服应力,从而在循环过程中具有更好的抗Si膨胀诱导裂纹的能力。此外,Mg2SiO4的Li+扩散能垒小于Li2SiO3和MgSiO3。因此,以Mg2SiO4为缓冲基质的微尺度掺镁SiOx具有高ICE、优异的结构完整性和循环过程中电极膨胀小的特点。该研究结果通过优化高能锂离子电池的硅酸盐缓冲基质,为设计微尺度SiOx阳极材料提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modulus-Engineered Silicates-Buffering Matrix for Enhanced Lithium Storage of Micro-Sized SiOx Anodes.

Microscale Silicon suboxide (SiOx) is a promising anode material and elemental doping is an effective strategy to enhance the initial coulombic efficiency (ICE) and cycle stability of SiOx by converting SiO2 into the electrochemically inert silicates-buffering matrix. However, the impact of the silicates-buffering modulus on the electrochemical properties is not well understood. Herein, the modulus of the silicate-buffering matrix is found to be crucial to restraining internal cracks and improving the electrochemical properties of microscale SiOx during cycling. Compared with the Li2SiO3 and MgSiO3 buffering matrixes, Mg2SiO4 has a higher modulus and yield stress resulting in better resistance to Si expansion-induced cracks during cycling. Moreover, Mg2SiO4 has a smaller Li+ diffusion energy barrier than Li2SiO3 and MgSiO3. Consequently, the microscale Mg-doped SiOx with the Mg2SiO4 buffering matrix has a high ICE, excellent structural integrity, and small electrode expansion during cycling. The results provide insights into the design of microscale SiOx anode materials by optimizing the silicates-buffering matrix for high-energy Li-ion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信