PruEV-AI: a Simple Approach Combines Urinary Extracellular Vesicle Isolation with AI-Assisted Analysis for Prostate Cancer Diagnosis.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Minju Lee, Bonhan Koo, Myoung Gyu Kim, Hyo Joo Lee, Eun Yeong Lee, Yeonjeong Roh, Chae Eun Bae, Seungil Park, Zhen Qiao, Il-Hwan Kim, Myung Kyun Woo, Choung-Soo Kim, Yong Shin
{"title":"PruEV-AI: a Simple Approach Combines Urinary Extracellular Vesicle Isolation with AI-Assisted Analysis for Prostate Cancer Diagnosis.","authors":"Minju Lee, Bonhan Koo, Myoung Gyu Kim, Hyo Joo Lee, Eun Yeong Lee, Yeonjeong Roh, Chae Eun Bae, Seungil Park, Zhen Qiao, Il-Hwan Kim, Myung Kyun Woo, Choung-Soo Kim, Yong Shin","doi":"10.1002/smtd.202500659","DOIUrl":null,"url":null,"abstract":"<p><p>Urinary extracellular vesicles (uEVs) are a promising source of prostate-derived biomarkers for non-invasive prostate cancer (PCa) diagnosis. However, conventional uEV isolation methods and single-marker assays often lack efficiency and diagnostic accuracy. Here, PruEV-AI is introduced, an integrated diagnostic system that combines rapid uEV isolation with AI-based biomarker analysis. The PruEV platform employs amine-modified zeolites (AZ) and carbohydrazide (CDH) to isolate uEVs and extract miRNAs in less than 30 min through electrostatic and covalent interactions. This one-step syringe-filter process enables high-throughput, reproducible, and user-friendly isolation of uEVs suitable for clinical diagnostics. Among 12 candidate miRNAs, 6 are validated using RT-qPCR in urine samples from 48 PCa patients and 49 controls. Individually, these miRNAs and PSA show modest diagnostic performance, with area under the curve (AUC) values ranging from 0.6 to 0.8. To overcome the limitations of single biomarkers, a deep learning (DL) model evaluates all 127 possible combinations of the 6 miRNAs and PSA. The optimal biomarker combination identified by the DL model achieves an AUC of 0.9556, with 93.33% sensitivity, specificity, and accuracy. Consequently, the PruEV-AI system provides a robust, non-invasive, and clinically relevant diagnostic approach for accurately identifying PCa, thereby supporting improved screening protocols and more effective therapeutic strategies.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500659"},"PeriodicalIF":10.7000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500659","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Urinary extracellular vesicles (uEVs) are a promising source of prostate-derived biomarkers for non-invasive prostate cancer (PCa) diagnosis. However, conventional uEV isolation methods and single-marker assays often lack efficiency and diagnostic accuracy. Here, PruEV-AI is introduced, an integrated diagnostic system that combines rapid uEV isolation with AI-based biomarker analysis. The PruEV platform employs amine-modified zeolites (AZ) and carbohydrazide (CDH) to isolate uEVs and extract miRNAs in less than 30 min through electrostatic and covalent interactions. This one-step syringe-filter process enables high-throughput, reproducible, and user-friendly isolation of uEVs suitable for clinical diagnostics. Among 12 candidate miRNAs, 6 are validated using RT-qPCR in urine samples from 48 PCa patients and 49 controls. Individually, these miRNAs and PSA show modest diagnostic performance, with area under the curve (AUC) values ranging from 0.6 to 0.8. To overcome the limitations of single biomarkers, a deep learning (DL) model evaluates all 127 possible combinations of the 6 miRNAs and PSA. The optimal biomarker combination identified by the DL model achieves an AUC of 0.9556, with 93.33% sensitivity, specificity, and accuracy. Consequently, the PruEV-AI system provides a robust, non-invasive, and clinically relevant diagnostic approach for accurately identifying PCa, thereby supporting improved screening protocols and more effective therapeutic strategies.

PruEV-AI:一种结合尿细胞外囊泡分离和ai辅助分析的前列腺癌诊断的简单方法
尿细胞外囊泡(uEVs)是非侵入性前列腺癌(PCa)诊断的一个有前途的前列腺源性生物标志物来源。然而,传统的uEV分离方法和单标记物检测往往缺乏效率和诊断准确性。本文介绍了PruEV-AI,这是一种综合诊断系统,将快速uEV分离与基于ai的生物标志物分析相结合。PruEV平台采用胺改性沸石(AZ)和碳肼(CDH),通过静电和共价相互作用,在不到30分钟的时间内分离出uev并提取mirna。这一步注射器-过滤器过程实现高通量,可重复性和用户友好的分离适合临床诊断的uev。在12个候选mirna中,有6个通过RT-qPCR在48例PCa患者和49例对照者的尿液样本中进行了验证。单独而言,这些mirna和PSA表现出适度的诊断性能,曲线下面积(AUC)值范围为0.6至0.8。为了克服单一生物标志物的局限性,深度学习(DL)模型评估了6种mirna和PSA的所有127种可能组合。DL模型确定的最佳生物标志物组合AUC为0.9556,灵敏度、特异性和准确性为93.33%。因此,PruEV-AI系统为准确识别PCa提供了一种强大的、非侵入性的、临床相关的诊断方法,从而支持改进的筛查方案和更有效的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信