Redox ReportPub Date : 2024-12-01Epub Date: 2024-07-15DOI: 10.1080/13510002.2024.2377870
Hong-Hui Wu, Qi Zhu, Na Liang, Yu Xiang, Tian-Yue Xu, Zi-Chao Huang, Jie-Yu Cai, Ling-Lin Weng, Hong-Shan Ge
{"title":"<i>CISD2</i> regulates oxidative stress and mitophagy to maintain the balance of the follicular microenvironment in PCOS.","authors":"Hong-Hui Wu, Qi Zhu, Na Liang, Yu Xiang, Tian-Yue Xu, Zi-Chao Huang, Jie-Yu Cai, Ling-Lin Weng, Hong-Shan Ge","doi":"10.1080/13510002.2024.2377870","DOIUrl":"10.1080/13510002.2024.2377870","url":null,"abstract":"<p><strong>Objectives: </strong>To observe the CISD2 expression among PCOS patients and to explore its profound impact on the follicular microenvironment. Moreover, we want to elucidate the intricate mechanistic contribution of <i>CISD2</i> to the onset and progression of PCOS.</p><p><strong>Methods: </strong>Oxidase NOX2, mitophagy-related proteins, and CISD2 were detected by WB. The changes in mitochondrial structure and quantity were observed by transmission electron microscopy. Mitochondrial and lysosome colocalization was used to detect the changes of mitophagy. MDA kit, GSH and GSSG Assay kit and ROS probe were used to detect oxidative stress damage.</p><p><strong>Results: </strong>We found that CISD2, mitophagy and oxidase in the GCs of PCOS patients were significantly increased. Testosterone stimulation leads to the increase of oxidase, mitophagy, and CISD2 in KGN cells. <i>CISD2</i> inhibition promoted the increase of mitophagy, and the activation of mitochondria-lysosome binding, while alleviating the oxidative stress.</p><p><strong>Conclusions: </strong>Inhibition of CISD2 can improve the occurrence of oxidative stress by increasing the level of mitophagy, thus affecting the occurrence and development of PCOS diseases.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"29 1","pages":"2377870"},"PeriodicalIF":5.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC467114/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141620855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Redox ReportPub Date : 2024-12-01Epub Date: 2024-05-24DOI: 10.1080/13510002.2024.2354625
Yan Qian, Xiao Li, Xinyu Li, Xijie Zhang, Qi Yuan, Zhengxia Wang, Minghun Zhang, Mao Huang, Ningfei Ji
{"title":"TOM5 regulates the mitochondrial membrane potential of alveolar epithelial cells in organizing pneumonia.","authors":"Yan Qian, Xiao Li, Xinyu Li, Xijie Zhang, Qi Yuan, Zhengxia Wang, Minghun Zhang, Mao Huang, Ningfei Ji","doi":"10.1080/13510002.2024.2354625","DOIUrl":"10.1080/13510002.2024.2354625","url":null,"abstract":"<p><p>Deficiency of TOM5, a mitochondrial protein, causes organizing pneumonia (OP) in mice. The clinical significance and mechanisms of TOM5 in the pathogenesis of OP remain elusive. We demonstrated that TOM5 was significantly increased in the lung tissues of OP patients, which was positively correlated with the collagen deposition. In a bleomycin-induced murine model of chronic OP, increased TOM5 was in line with lung fibrosis. In vitro, TOM5 regulated the mitochondrial membrane potential in alveolar epithelial cells. TOM5 reduced the proportion of early apoptotic cells and promoted cell proliferation. Our study shed light on the roles of TOM5 in OP.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"29 1","pages":"2354625"},"PeriodicalIF":3.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11134018/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141093979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Melittin alleviates sepsis-induced acute kidney injury by promoting GPX4 expression to inhibit ferroptosis.","authors":"Hongyan Zan, Jizheng Liu, Meixia Yang, Honghui Zhao, Chunyan Gao, Yunyan Dai, Zhiming Wang, Hongxuan Liu, Yunfei Zhang","doi":"10.1080/13510002.2023.2290864","DOIUrl":"10.1080/13510002.2023.2290864","url":null,"abstract":"<p><strong>Objectives: </strong>Melittin, the main component of bee venom, is a natural anti-inflammatory substance, in addition to its ability to fight cancer, antiviral, and useful in diabetes treatment. This study seeks to determine whether melittin can protect renal tissue from sepsis-induced damage by preventing ferroptosis and explore the protective mechanism.</p><p><strong>Methods: </strong>In this study, we investigated the specific protective mechanism of melittin against sepsis-induced renal injury by screening renal injury indicators and ferroptosis -related molecules and markers in animal and cellular models of sepsis.</p><p><strong>Results: </strong>Our results showed that treatment with melittin attenuated the pathological changes in mice with lipopolysaccharide-induced acute kidney injury. Additionally, we found that melittin attenuated ferroptosis in kidney tissue by enhancing GPX4 expression, which ultimately led to the reduction of kidney tissue injury. Furthermore, we observed that melittin enhanced NRF2 nuclear translocation, which consequently upregulated GPX4 expression. our findings suggest that melittin may be a potential therapeutic agent for the treatment of sepsis-associated acute kidney injury by inhibiting ferroptosis through the GPX4/NRF2 pathway.</p><p><strong>Conclusions: </strong>Our study reveals the protective mechanism of melittin in septic kidney injury and provides a new therapeutic direction for Sepsis-AKI.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"29 1","pages":"2290864"},"PeriodicalIF":3.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10763831/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139040459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Redox ReportPub Date : 2024-12-01Epub Date: 2024-11-04DOI: 10.1080/13510002.2024.2416835
Ahmed Z Alanazi, Mohammed Alqinyah, Abdullah S Alhamed, Hanan Mohammed, Mohammad Raish, Khaldoon Aljerian, Jawza F Alsabhan, Khalid Alhazzani
{"title":"Cardioprotective effects of liposomal resveratrol in diabetic rats: unveiling antioxidant and anti-inflammatory benefits.","authors":"Ahmed Z Alanazi, Mohammed Alqinyah, Abdullah S Alhamed, Hanan Mohammed, Mohammad Raish, Khaldoon Aljerian, Jawza F Alsabhan, Khalid Alhazzani","doi":"10.1080/13510002.2024.2416835","DOIUrl":"10.1080/13510002.2024.2416835","url":null,"abstract":"<p><p>As a consequence of chronic hyperglycemia, diabetes complications and tissue damage are exacerbated. There is evidence that natural phytochemicals, including resveratrol, a bioactive polyphenol, may be able to reduce oxidative stress and improve insulin sensitivity. However, resveratrol's limited bioavailability hampers its therapeutic effectiveness. By using liposomes, resveratrol may be better delivered into the body and be more bioavailable. The objective of this study was to assess the cardioprotective potential of liposome-encapsulated resveratrol (LR) in a streptozotocin-induced (STZ) diabetic rat model. Adult male Wistar rats were categorized into five groups: control, diabetic, resveratrol-treated (40 mg/kg), liposomal resveratrol (LR)-treated (20 mg/kg) and liposomal resveratrol (LR)-treated (40 mg/kg) for a five-week study period. We compared the effects of LR to those of resveratrol (40 mg/kg) on various parameters, including serum levels of cardiac markers, tissue levels of pro-inflammatory cytokines, nuclear transcription factor, oxidative stress markers, and apoptotic markers. LR treatment in STZ-diabetic rats resulted in notable physiological improvements, including blood glucose regulation, inflammation reduction, oxidative stress mitigation, and apoptosis inhibition. LR effectively lowered oxidative stress and enhanced cardiovascular function. It also demonstrated a remarkable ability to suppress NF-kB-mediated inflammation by inhibiting the pro-inflammatory cytokines TNF-α and IL-6. Additionally, LR restored the antioxidant enzymes, catalase and glutathione peroxidase, thereby effectively counteracting oxidative stress. Notably, LR modulated apoptotic regulators, including caspase, Bcl2, and Bax, suggesting a role in regulating programmed cell death. These biochemical alterations were consistent with improved structural integrity of cardiac tissue as revealed by histological examination. In comparison, resveratrol exhibited lower efficacy at an equivalent dosage. Liposomal resveratrol shows promise in alleviating hyperglycemia-induced cardiac damage in diabetes. Further research is warranted to explore its potential as a therapeutic agent for diabetic cardiovascular complications and possible cardioprotective effects.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"29 1","pages":"2416835"},"PeriodicalIF":5.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536670/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Redox ReportPub Date : 2024-12-01Epub Date: 2024-11-04DOI: 10.1080/13510002.2024.2420564
Lei Li, Jiantao Wang, Dandan Zhang, Li Deng, Xudong Zhao, Chunqing Wang, Xianliang Yan, Shuqun Hu
{"title":"Resveratrol relieves myocardial ischemia-reperfusion injury through inhibiting AKT nitration modification.","authors":"Lei Li, Jiantao Wang, Dandan Zhang, Li Deng, Xudong Zhao, Chunqing Wang, Xianliang Yan, Shuqun Hu","doi":"10.1080/13510002.2024.2420564","DOIUrl":"10.1080/13510002.2024.2420564","url":null,"abstract":"<p><strong>Objective: </strong>The aim of this study was to clarify whether Protein kinase B (PKB)/AKT is nitrated in myocardial ischemia and reperfusion injury (MIRI) resveratrol (RSV)'s protective effect during this process.</p><p><strong>Methods: </strong>We blocked blood flow of the left coronary artery (LAD) of mice and used H9c2 cells under an oxygen-glucose deprivation (OGD) environment as animal and cell models of MIRI. N-methyl-D-aspartic acid receptor (NMDAR) inhibitor MK801, neuronal nitric oxide synthase (nNOS) inhibitor 7-NI and RSV were used as interventions. Nitration of proteins, infarction area, cardiomyocyte apoptosis and AKT nitration sites were detected during this study.</p><p><strong>Results: </strong>During <i>in-vivo</i> study, AKT nitration was induced through the NMDAR/nNOS/peroxynitrite (ONOO<sup>-</sup>) pathway, leading to decreased phosphorylation of AKT and increased cardiomyocyte apoptosis. AKT nitration was decreased and phosphorylation was elevated when administrated with RSV, MK801 and 7-NI. In <i>in-vitro</i> study, AKT nitration and TUNEL positive cells was elevated when administrated with NO donor H9c2 cells after OGD/R, when administrated with RSV, MK801 and 7-NI, AKT nitration and apoptosis was deceased in H9c2 cells. Mass spectrometry revealed that nitration sites of AKT included 14 Tyrosine residues.</p><p><strong>Discussion: </strong>RSV could inhibit AKT nitration and elevated phosphorylation through suppressing NMDAR/nNOS/ONOO<sup>-</sup> pathway and further reduce the apoptosis of cardiomyocytes in of myocardial I/R.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"29 1","pages":"2420564"},"PeriodicalIF":5.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536672/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Redox ReportPub Date : 2024-12-01Epub Date: 2024-02-27DOI: 10.1080/13510002.2024.2319963
Rania A Elrashidy, Esraa M Zakaria, Rehab A Hasan, Asmaa M Elmaghraby, Dina A Hassan, Ranya M Abdelgalil, Shaimaa R Abdelmohsen, Amira M Negm, Azza S Khalil, Ayat M S Eraque, Reem M Ahmed, Walaa S Sabbah, Ahmed A Ahmed, Samah E Ibrahim
{"title":"Implication of endoplasmic reticulum stress and mitochondrial perturbations in remote liver injury after renal ischemia/reperfusion in rats: potential protective role of azilsartan.","authors":"Rania A Elrashidy, Esraa M Zakaria, Rehab A Hasan, Asmaa M Elmaghraby, Dina A Hassan, Ranya M Abdelgalil, Shaimaa R Abdelmohsen, Amira M Negm, Azza S Khalil, Ayat M S Eraque, Reem M Ahmed, Walaa S Sabbah, Ahmed A Ahmed, Samah E Ibrahim","doi":"10.1080/13510002.2024.2319963","DOIUrl":"10.1080/13510002.2024.2319963","url":null,"abstract":"<p><p><b>Objectives:</b> Distant liver injury is a complication of renal ischemia-reperfusion (I/R) injury, which imposes mortality and economic burden. This study aimed to elucidate the cross-talk of endoplasmic reticulum (ER) stress and mitochondrial perturbations in renal I/R-induced liver injury, and the potential hepatoprotective effect of azilsartan (AZL).<b>Methods:</b> Male albino Wister rats were pre-treated with AZL (3 mg/kg/day, PO) for 7 days then a bilateral renal I/R or sham procedure was performed. Activities of liver enzymes were assessed in plasma. The structure and ultra-structure of hepatocytes were assessed by light and electron microscopy. Markers of ER stress, mitochondrial biogenesis and apoptosis were analyzed in livers of rats.<b>Results:</b> Renal ischemic rats showed higher plasma levels of liver enzymes than sham-operated rats, coupled with histological and ultra-structural alterations in hepatocytes. Mechanistically, there was up-regulation of ER stress markers and suppression of mitochondrial biogenesis-related proteins and enhanced apoptosis in livers of renal ischemic rats. These abnormalities were almost abrogated by AZL pretreatment.<b>Discussion:</b> Our findings uncovered the involvement of mitochondrial perturbations, ER stress and apoptosis in liver injury following renal I/R, and suggested AZL as a preconditioning strategy to ameliorate remote liver injury in patients susceptible to renal I/R after adequate clinical testing.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"29 1","pages":"2319963"},"PeriodicalIF":3.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903753/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139973332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Redox ReportPub Date : 2024-12-01Epub Date: 2024-05-09DOI: 10.1080/13510002.2024.2345455
Hai-Yu Mo, Ruo-Bing Wang, Meng-Yao Ma, Yi Zhang, Xin-Yu Li, Wang-Rong Wen, Yi Han, Tian Tian
{"title":"MTHFD2-mediated redox homeostasis promotes gastric cancer progression under hypoxic conditions.","authors":"Hai-Yu Mo, Ruo-Bing Wang, Meng-Yao Ma, Yi Zhang, Xin-Yu Li, Wang-Rong Wen, Yi Han, Tian Tian","doi":"10.1080/13510002.2024.2345455","DOIUrl":"10.1080/13510002.2024.2345455","url":null,"abstract":"<p><strong>Objectives: </strong>Cancer cells undergo metabolic reprogramming to adapt to high oxidative stress, but little is known about how metabolic remodeling enables gastric cancer cells to survive stress associated with aberrant reactive oxygen species (ROS) production. Here, we aimed to identify the key metabolic enzymes that protect gastric cancer (GC) cells from oxidative stress.</p><p><strong>Methods: </strong>ROS level was detected by DCFH-DA probes. Multiple cell biological studies were performed to identify the underlying mechanisms. Furthermore, cell-based xenograft and patient-derived xenograft (PDX) model were performed to evaluate the role of MTHFD2 in vivo.</p><p><strong>Results: </strong>We found that overexpression of MTHFD2, but not MTHFD1, is associated with reduced overall and disease-free survival in gastric cancer. In addition, MTHFD2 knockdown reduces the cellular NADPH/NADP+ ratio, colony formation and mitochondrial function, increases cellular ROS and cleaved PARP levels and induces in cell death under hypoxia, a hallmark of solid cancers and a common inducer of oxidative stress. Moreover, genetic or pharmacological inhibition of MTHFD2 reduces tumor burden in both tumor cell lines and patient-derived xenograft-based models.</p><p><strong>Discussion: </strong>our study highlights the crucial role of MTHFD2 in redox regulation and tumor progression, demonstrating the therapeutic potential of targeting MTHFD2.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"29 1","pages":"2345455"},"PeriodicalIF":3.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086033/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140896275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inhibition of SLC40A1 represses osteoblast formation via inducing iron accumulation and activating the PERK/ATF4/CHOP pathway mediated oxidative stress.","authors":"Yu Fang, Wei Li, Chongyang Dong, Binli Gao, Wen Guo, Mingyu Li, Zhichao Jiao","doi":"10.1080/13510002.2024.2428147","DOIUrl":"10.1080/13510002.2024.2428147","url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to investigate the effects of solute carrier family 40 member 1 (SLC40A1) on iron accumulation, oxidative stress and differentiation in osteoblasts and potential mechanisms.</p><p><strong>Methods: </strong>Mouse preosteoblastic MC3T3-E1 cells were transfected with the SLC40A1 overexpression vector (oeSLC40A1) and siRNA (siSLC40A1), then cell differentiation was induced via ascorbic acid and β-glycerophosphate. Besides, Ferrostatin-1 (ferroptosis inhibitor) and GSK2606414 (PERK inhibitor) were added with siSLC40A1.</p><p><strong>Results: </strong>Fe<sup>2+</sup>, malondialdehyde (MDA), and reactive oxygen species (ROS) were higher but reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio was lower after siSLC40A1 transfection, while reduced Fe<sup>2+</sup> and ROS but elevated GSH/GSSG ratio was observed after oeSLC40A1 transfection. Alkaline phosphatase (ALP) staining, Alizarin Red S (ARS) staining, osteopontin (OPN) and bone morphogenetic protein 2 (BMP2) were lower after siSLC40A1 transfection but were greater after oeSLC40A1 transfection. Furthermore, SLC40A1 negatively regulated the PERK/ATF4/CHOP pathway. Further exploration revealed that Fe<sup>2+</sup>, MDA, ROS, and the PERK/ATF4/CHOP pathway were attenuated, while GSH/GSSG ratio, ALP staining, ARS staining, and OPN expression were increased after ferrostatin-1 treatment in the siSLC40A1-transfected cells. Similar trends were observed with respect to GSK2606414 treatment with siSLC40A1.</p><p><strong>Conclusion: </strong>SLC40A1 inhibition suppresses osteoblast formation by facilitating iron accumulation and activating the PERK/ATF4/CHOP pathway-mediated oxidative stress.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"29 1","pages":"2428147"},"PeriodicalIF":5.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610352/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Redox ReportPub Date : 2024-12-01Epub Date: 2024-11-28DOI: 10.1080/13510002.2024.2430882
Edina Bakondi, Tobias Jung, Susanna Marg, Vanessa Schnell, Daniela Weber, Tim J Schulz, Tilman Grune, Annika Höhn
{"title":"Palmitic acid and eicosapentaenoic acid supplementation in 3T3 adipocytes: impact on lipid storage and oxidative stress.","authors":"Edina Bakondi, Tobias Jung, Susanna Marg, Vanessa Schnell, Daniela Weber, Tim J Schulz, Tilman Grune, Annika Höhn","doi":"10.1080/13510002.2024.2430882","DOIUrl":"10.1080/13510002.2024.2430882","url":null,"abstract":"<p><strong>Objectives: </strong>Obesity is a worldwide public health problem, predisposing individuals to serious cardiovascular and metabolic complications such as type 2 diabetes mellitus. White adipose tissue serves as an important regulator of energy balance, and its expansion in obesity can trigger inflammatory reactions and oxidative stress, which can also lead to insulin resistance. Adipocytes, with a key role in regulating metabolic homeostasis, respond to increased calorie intake and altered fatty acid composition with hypertrophy or hyperplasia. Of particular interest are saturated fatty acids such as palmitic acid and omega-3 polyunsaturated fatty acids such as eicosapentaenoic acid (EPA), which have differential effects on adipocyte function and inflammation.</p><p><strong>Methods: </strong>Using 3T3-L1 cells as a model for adipocytes, we evaluated the effects of PA and EPA on lipid accumulation, droplet size, and oxidative stress markers.</p><p><strong>Results: </strong>We were able to show that EPA supplementation in 3T3 adipocytes does not lead to excessive lipid accumulation, but rather reduces the size of lipid droplets and also induces redox changes due to the unsaturated nature of EPA.</p><p><strong>Discussion: </strong>These results emphasize the contrasting roles of PA and EPA and the importance of fatty acid composition in the regulation of adipocyte function.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"29 1","pages":"2430882"},"PeriodicalIF":5.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610268/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}