Redox Report最新文献

筛选
英文 中文
Hyperoxia exposure induces ferroptosis and apoptosis by downregulating PLAGL2 and repressing HIF-1α/VEGF signaling pathway in newborn alveolar typeII epithelial cell. 高氧暴露通过下调PLAGL2和抑制新生肺泡II型上皮细胞的HIF-1α/VEGF信号通路,诱导铁变态和细胞凋亡。
IF 5.2 2区 生物学
Redox Report Pub Date : 2024-12-01 Epub Date: 2024-08-05 DOI: 10.1080/13510002.2024.2387465
Yuting Zhu, Hongmei Hou, Yawen Li, Yanyu Zhang, Yuanyuan Fang, Si Chen, Le Zhang, Weilai Jin, Yahui Zhou
{"title":"Hyperoxia exposure induces ferroptosis and apoptosis by downregulating PLAGL2 and repressing HIF-1α/VEGF signaling pathway in newborn alveolar typeII epithelial cell.","authors":"Yuting Zhu, Hongmei Hou, Yawen Li, Yanyu Zhang, Yuanyuan Fang, Si Chen, Le Zhang, Weilai Jin, Yahui Zhou","doi":"10.1080/13510002.2024.2387465","DOIUrl":"10.1080/13510002.2024.2387465","url":null,"abstract":"<p><strong>Backgroud: </strong>Bronchopulmonary dysplasia (BPD) is one of the most important complications plaguing neonates and can lead to a variety of sequelae. the ability of the HIF-1α/VEGF signaling pathway to promote angiogenesis has an important role in neonatal lung development.</p><p><strong>Method: </strong>Newborn rats were exposed to 85% oxygen. The effects of hyperoxia exposure on Pleomorphic Adenoma Gene like-2 (PLAGL2) and the HIF-1α/VEGF pathway in rats lung tissue were assessed through immunofluorescence and Western Blot analysis. In cell experiments, PLAGL2 was upregulated, and the effects of hyperoxia and PLAGL2 on cell viability were evaluated using scratch assays, CCK-8 assays, and EDU staining. The role of upregulated PLAGL2 in the HIF-1α/VEGF pathway was determined by Western Blot and RT-PCR. Apoptosis and ferroptosis effects were determined through flow cytometry and viability assays.</p><p><strong>Results: </strong>Compared with the control group, the expression levels of PLAGL2, HIF-1α, VEGF, and SPC in lung tissues after 3, 7, and 14 days of hyperoxia exposure were all decreased. Furthermore, hyperoxia also inhibited the proliferation and motility of type II alveolar epithelial cells (AECII) and induced apoptosis in AECII. Upregulation of PLAGL2 restored the proliferation and motility of AECII and suppressed cell apoptosis and ferroptosis, while the HIF-1α/VEGF signaling pathway was also revived.</p><p><strong>Conclusions: </strong>We confirmed the positive role of PLAGL2 and HIF-1α/VEGF signaling pathway in promoting BPD in hyperoxia conditions, and provided a promising therapeutic targets.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302460/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methane saline suppresses ferroptosis via the Nrf2/HO-1 signaling pathway to ameliorate intestinal ischemia-reperfusion injury. 甲烷生理盐水通过Nrf2/HO-1信号通路抑制铁突变,从而改善肠道缺血再灌注损伤。
IF 5.2 2区 生物学
Redox Report Pub Date : 2024-12-01 Epub Date: 2024-07-18 DOI: 10.1080/13510002.2024.2373657
Qingrui Fan, Hulin Chang, Lifei Tian, Bobo Zheng, Ruiting Liu, Zeyu Li
{"title":"Methane saline suppresses ferroptosis via the Nrf2/HO-1 signaling pathway to ameliorate intestinal ischemia-reperfusion injury.","authors":"Qingrui Fan, Hulin Chang, Lifei Tian, Bobo Zheng, Ruiting Liu, Zeyu Li","doi":"10.1080/13510002.2024.2373657","DOIUrl":"10.1080/13510002.2024.2373657","url":null,"abstract":"<p><strong>Objectives: </strong>Intestinal ischemia-reperfusion (I/R) injury is a multifactorial and complex clinical pathophysiological process. Current research indicates that the pathogenesis of intestinal I/R injury involves various mechanisms, including ferroptosis. Methane saline (MS) has been demonstrated to primarily exert anti-inflammatory and antioxidant effects in I/R injury. In this study, we mainly investigated the effect of MS on ferroptosis in intestinal I/R injury and determined its potential mechanism.</p><p><strong>Methods: </strong>In vivo and in vitro intestinal I/R injury models were established to validate the relationship between ferroptosis and intestinal I/R injury. MS treatment was applied to assess its impact on intestinal epithelial cell damage, intestinal barrier disruption, and ferroptosis.</p><p><strong>Results: </strong>MS treatment led to a reduction in I/R-induced intestinal epithelial cell damage and intestinal barrier disruption. Moreover, similar to treatment with ferroptosis inhibitors, MS treatment reduced ferroptosis in I/R, as indicated by a decrease in the levels of intracellular pro-ferroptosis factors, an increase in the levels of anti-ferroptosis factors, and alleviation of mitochondrial damage. Additionally, the expression of Nrf2/HO-1 was significantly increased after MS treatment. However, the intestinal protective and ferroptosis inhibitory effects of MS were diminished after the use of M385 to inhibit Nrf2 in mice or si-Nrf2 in Caco-2 cells.</p><p><strong>Discussion: </strong>We proved that intestinal I/R injury was mitigated by MS and that the underlying mechanism involved modulating the Nrf2/HO-1 signaling pathway to decrease ferroptosis. MS could be a promising treatment for intestinal I/R injury.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11259071/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141634359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Navigating the redox landscape: reactive oxygen species in regulation of cell cycle. 氧化还原景观导航:活性氧对细胞周期的调控。
IF 5.2 2区 生物学
Redox Report Pub Date : 2024-12-01 Epub Date: 2024-07-07 DOI: 10.1080/13510002.2024.2371173
Viktoria Mackova, Martina Raudenska, Hana Holcova Polanska, Milan Jakubek, Michal Masarik
{"title":"Navigating the redox landscape: reactive oxygen species in regulation of cell cycle.","authors":"Viktoria Mackova, Martina Raudenska, Hana Holcova Polanska, Milan Jakubek, Michal Masarik","doi":"10.1080/13510002.2024.2371173","DOIUrl":"https://doi.org/10.1080/13510002.2024.2371173","url":null,"abstract":"<p><p><b>Objectives:</b> To advance our knowledge of disease mechanisms and therapeutic options, understanding cell cycle regulation is critical. Recent research has highlighted the importance of reactive oxygen species (ROS) in cell cycle regulation. Although excessive ROS levels can lead to age-related pathologies, ROS also play an essential role in normal cellular functions. Many cell cycle regulatory proteins are affected by their redox status, but the precise mechanisms and conditions under which ROS promote or inhibit cell proliferation are not fully understood.<b>Methods:</b> This review presents data from the scientific literature and publicly available databases on changes in redox state during the cell cycle and their effects on key regulatory proteins.<b>Results:</b> We identified redox-sensitive targets within the cell cycle machinery and analysed different effects of ROS (type, concentration, duration of exposure) on cell cycle phases. For example, moderate levels of ROS can promote cell proliferation by activating signalling pathways involved in cell cycle progression, whereas excessive ROS levels can induce DNA damage and trigger cell cycle arrest or cell death.<b>Discussion:</b> Our findings encourage future research focused on identifying redox-sensitive targets in the cell cycle machinery, potentially leading to new treatments for diseases with dysregulated cell proliferation.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bilirubin regulates cell death type by alleviating macrophage mitochondrial dysfunction caused by cigarette smoke extract. 胆红素通过缓解香烟烟雾提取物导致的巨噬细胞线粒体功能障碍来调节细胞死亡类型。
IF 5.2 2区 生物学
Redox Report Pub Date : 2024-12-01 Epub Date: 2024-07-29 DOI: 10.1080/13510002.2024.2382946
Jingjing Wei, Yuan Tian, Jinshu Wei, Meiqi Guan, Xiaoya Yu, Jianing Xie, Guoquan Fan
{"title":"Bilirubin regulates cell death type by alleviating macrophage mitochondrial dysfunction caused by cigarette smoke extract.","authors":"Jingjing Wei, Yuan Tian, Jinshu Wei, Meiqi Guan, Xiaoya Yu, Jianing Xie, Guoquan Fan","doi":"10.1080/13510002.2024.2382946","DOIUrl":"10.1080/13510002.2024.2382946","url":null,"abstract":"<p><strong>Objectives: </strong>To explore the effects and mechanisms of bilirubin on mitochondrial function and type of macrophage cell death after exposure to cigarette smoke extract (CSE).</p><p><strong>Methods: </strong>RAW264.7 macrophages were treated with different concentrations of CSE and bilirubin solutions and divided into four groups: control, CSE, bilirubin, and bilirubin + CSE groups. The necrotic and apoptotic states of the macrophages were determined using an Annexin V-fluorescein 5-isothiocyanate/propidium iodide (FITC/PI) staining kit. Cytoplasmic NOD-like receptor family, pyrin domain containing 3 (NLRP3) expression in macrophages was detected by immunofluorescence and the levels of IL-1β and IL-18 in the supernatants of culture medium were detected by enzyme linked immunosorbent assay (ELISA) test. A JC-1 mitochondrial membrane potential detection kit was used to assess mitochondrial membrane damage and the adenosine triphosphate (ATP) assay kit was used to determine intracellular ATP levels. After the macrophages were stained with reactive oxygen species (ROS) specific dye, 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA), the fluorescence intensity and proportion of ROS-positive macrophages were measured using flow cytometry.</p><p><strong>Results: </strong>We observed that compared with those of 0 μM (control group), concentrations of 5, 10, or 20 μΜ bilirubin significantly decreased cell viability, which was increased by bilirubin exposure below 1 μM. The effect of CSE on macrophage viability was concentration- and time-dependent. Bilirubin of 0.2 μM could alleviate the inhibition of macrophage viability caused by 5% CSE. In addition, bilirubin intervention could reduce the occurrence of necrosis and pyroptosis to a certain extent.</p><p><strong>Conclusions: </strong>CSE could cause mitochondrial dysfunction in macrophages, as demonstrated by a decrease in mitochondrial membrane potential and intracellular ATP levels and an increase in ROS production, while bilirubin could relieve mitochondrial dysfunction caused by CSE.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288206/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141793361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sarmentosin alleviates doxorubicin-induced cardiotoxicity and ferroptosis via the p62-Keap1-Nrf2 pathway. 沙门托品通过p62-Keap1-Nrf2途径减轻多柔比星诱导的心脏毒性和铁变态反应
IF 5.2 2区 生物学
Redox Report Pub Date : 2024-12-01 Epub Date: 2024-08-16 DOI: 10.1080/13510002.2024.2392329
Zhihui Lin, Chang Wu, Dongyan Song, Chenxi Zhu, Bosen Wu, Jie Wang, Yangjing Xue
{"title":"Sarmentosin alleviates doxorubicin-induced cardiotoxicity and ferroptosis <i>via</i> the p62-Keap1-Nrf2 pathway.","authors":"Zhihui Lin, Chang Wu, Dongyan Song, Chenxi Zhu, Bosen Wu, Jie Wang, Yangjing Xue","doi":"10.1080/13510002.2024.2392329","DOIUrl":"10.1080/13510002.2024.2392329","url":null,"abstract":"<p><p>Doxorubicin (Dox) is extensively used as an antitumor agent, but its severe cardiotoxicity significantly limits its clinical use. Current treatments for Dox-induced cardiotoxicity are inadequate, necessitating alternative solutions. This study evaluated the effects of sarmentosin, a compound from Sedum sarmentosum, on Dox-induced cardiotoxicity and dysfunction. Sarmentosin was administered as a pretreatment to both mice and H9c2 cells before Dox exposure. Subsequently, markers of Dox-induced cardiotoxicity and ferroptosis in serum and cell supernatants were measured. Western blot analysis was utilized to detect levels of ferroptosis, oxidative stress, and autophagy proteins. Additionally, echocardiography, hematoxylin-eosin staining, ROS detection, and immunofluorescence techniques were employed to support our findings. Results demonstrated that sarmentosin significantly inhibited iron accumulation, lipid peroxidation, and oxidative stress, thereby reducing Dox-induced ferroptosis and cardiotoxicity in C57BL/6 mice and H9c2 cells. The mechanism involved the activation of autophagy and the Nrf2 signaling pathway. These findings suggest that sarmentosin may prevent Dox-induced cardiotoxicity by mitigating ferroptosis. The study underscores the potential of compounds like sarmentosin in treating Dox-induced cardiotoxicity.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11332294/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141992473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating anticancer activity of emodin by enhancing antioxidant activities and affecting PKC/ADAMTS4 pathway in thioacetamide-induced hepatocellular carcinoma in rats. 评估大黄素通过增强抗氧化活性和影响PKC/ADAMTS4通路对硫代乙酰胺诱导的大鼠肝细胞癌的抗癌活性
IF 5.2 2区 生物学
Redox Report Pub Date : 2024-12-01 Epub Date: 2024-06-11 DOI: 10.1080/13510002.2024.2365590
Hanan M Hassan, Ahmed M Hamdan, Abdullah Alattar, Reem Alshaman, Omar Bahattab, Mohammed M H Al-Gayyar
{"title":"Evaluating anticancer activity of emodin by enhancing antioxidant activities and affecting PKC/ADAMTS4 pathway in thioacetamide-induced hepatocellular carcinoma in rats.","authors":"Hanan M Hassan, Ahmed M Hamdan, Abdullah Alattar, Reem Alshaman, Omar Bahattab, Mohammed M H Al-Gayyar","doi":"10.1080/13510002.2024.2365590","DOIUrl":"10.1080/13510002.2024.2365590","url":null,"abstract":"<p><p>Emodin is a naturally occurring anthraquinone derivative with a wide range of pharmacological activities, including neuroprotective and anti-inflammatory activities. We aim to assess the anticancer activity of emodin against hepatocellular carcinoma (HCC) in rat models using the proliferation, invasion, and angiogenesis biomarkers. After induction of HCC, assessment of the liver impairment and the histopathology of liver sections were investigated. Hepatic expression of both mRNA and protein of the oxidative stress biomarkers, HO-1, Nrf2; the mitogenic activation biomarkers, ERK5, PKCδ; the tissue destruction biomarker, ADAMTS4; the tissue homeostasis biomarker, aggregan; the cellular fibrinolytic biomarker, MMP3; and of the cellular angiogenesis biomarker, VEGF were measured. Emodin increased the survival percentage and reduced the number of hepatic nodules compared to the HCC group. Besides, emodin reduced the elevated expression of both mRNA and proteins of all PKC, ERK5, ADAMTS4, MMP3, and VEGF compared with the HCC group. On the other hand, emodin increased the expression of mRNA and proteins of Nrf2, HO-1, and aggrecan compared with the HCC group. Therefore, emodin is a promising anticancer agent against HCC preventing the cancer prognosis and infiltration. It works through many mechanisms of action, such as blocking oxidative stress, proliferation, invasion, and angiogenesis.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11168332/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141306738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CISD2 regulates oxidative stress and mitophagy to maintain the balance of the follicular microenvironment in PCOS. CISD2调节氧化应激和有丝分裂,以维持多囊卵巢综合症患者卵泡微环境的平衡。
IF 5.2 2区 生物学
Redox Report Pub Date : 2024-12-01 Epub Date: 2024-07-15 DOI: 10.1080/13510002.2024.2377870
Hong-Hui Wu, Qi Zhu, Na Liang, Yu Xiang, Tian-Yue Xu, Zi-Chao Huang, Jie-Yu Cai, Ling-Lin Weng, Hong-Shan Ge
{"title":"<i>CISD2</i> regulates oxidative stress and mitophagy to maintain the balance of the follicular microenvironment in PCOS.","authors":"Hong-Hui Wu, Qi Zhu, Na Liang, Yu Xiang, Tian-Yue Xu, Zi-Chao Huang, Jie-Yu Cai, Ling-Lin Weng, Hong-Shan Ge","doi":"10.1080/13510002.2024.2377870","DOIUrl":"10.1080/13510002.2024.2377870","url":null,"abstract":"<p><strong>Objectives: </strong>To observe the CISD2 expression among PCOS patients and to explore its profound impact on the follicular microenvironment. Moreover, we want to elucidate the intricate mechanistic contribution of <i>CISD2</i> to the onset and progression of PCOS.</p><p><strong>Methods: </strong>Oxidase NOX2, mitophagy-related proteins, and CISD2 were detected by WB. The changes in mitochondrial structure and quantity were observed by transmission electron microscopy. Mitochondrial and lysosome colocalization was used to detect the changes of mitophagy. MDA kit, GSH and GSSG Assay kit and ROS probe were used to detect oxidative stress damage.</p><p><strong>Results: </strong>We found that CISD2, mitophagy and oxidase in the GCs of PCOS patients were significantly increased. Testosterone stimulation leads to the increase of oxidase, mitophagy, and CISD2 in KGN cells. <i>CISD2</i> inhibition promoted the increase of mitophagy, and the activation of mitochondria-lysosome binding, while alleviating the oxidative stress.</p><p><strong>Conclusions: </strong>Inhibition of CISD2 can improve the occurrence of oxidative stress by increasing the level of mitophagy, thus affecting the occurrence and development of PCOS diseases.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC467114/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141620855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction. 更正。
IF 3.8 2区 生物学
Redox Report Pub Date : 2024-12-01 Epub Date: 2024-04-02 DOI: 10.1080/13510002.2024.2327255
{"title":"Correction.","authors":"","doi":"10.1080/13510002.2024.2327255","DOIUrl":"10.1080/13510002.2024.2327255","url":null,"abstract":"","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10993761/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140336728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Melittin alleviates sepsis-induced acute kidney injury by promoting GPX4 expression to inhibit ferroptosis. 美乐汀通过促进 GPX4 的表达来抑制铁变态反应,从而减轻败血症引起的急性肾损伤。
IF 3.8 2区 生物学
Redox Report Pub Date : 2024-12-01 Epub Date: 2023-12-27 DOI: 10.1080/13510002.2023.2290864
Hongyan Zan, Jizheng Liu, Meixia Yang, Honghui Zhao, Chunyan Gao, Yunyan Dai, Zhiming Wang, Hongxuan Liu, Yunfei Zhang
{"title":"Melittin alleviates sepsis-induced acute kidney injury by promoting GPX4 expression to inhibit ferroptosis.","authors":"Hongyan Zan, Jizheng Liu, Meixia Yang, Honghui Zhao, Chunyan Gao, Yunyan Dai, Zhiming Wang, Hongxuan Liu, Yunfei Zhang","doi":"10.1080/13510002.2023.2290864","DOIUrl":"10.1080/13510002.2023.2290864","url":null,"abstract":"<p><strong>Objectives: </strong>Melittin, the main component of bee venom, is a natural anti-inflammatory substance, in addition to its ability to fight cancer, antiviral, and useful in diabetes treatment. This study seeks to determine whether melittin can protect renal tissue from sepsis-induced damage by preventing ferroptosis and explore the protective mechanism.</p><p><strong>Methods: </strong>In this study, we investigated the specific protective mechanism of melittin against sepsis-induced renal injury by screening renal injury indicators and ferroptosis -related molecules and markers in animal and cellular models of sepsis.</p><p><strong>Results: </strong>Our results showed that treatment with melittin attenuated the pathological changes in mice with lipopolysaccharide-induced acute kidney injury. Additionally, we found that melittin attenuated ferroptosis in kidney tissue by enhancing GPX4 expression, which ultimately led to the reduction of kidney tissue injury. Furthermore, we observed that melittin enhanced NRF2 nuclear translocation, which consequently upregulated GPX4 expression. our findings suggest that melittin may be a potential therapeutic agent for the treatment of sepsis-associated acute kidney injury by inhibiting ferroptosis through the GPX4/NRF2 pathway.</p><p><strong>Conclusions: </strong>Our study reveals the protective mechanism of melittin in septic kidney injury and provides a new therapeutic direction for Sepsis-AKI.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10763831/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139040459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TOM5 regulates the mitochondrial membrane potential of alveolar epithelial cells in organizing pneumonia. TOM5调节组织性肺炎中肺泡上皮细胞的线粒体膜电位。
IF 3.8 2区 生物学
Redox Report Pub Date : 2024-12-01 Epub Date: 2024-05-24 DOI: 10.1080/13510002.2024.2354625
Yan Qian, Xiao Li, Xinyu Li, Xijie Zhang, Qi Yuan, Zhengxia Wang, Minghun Zhang, Mao Huang, Ningfei Ji
{"title":"TOM5 regulates the mitochondrial membrane potential of alveolar epithelial cells in organizing pneumonia.","authors":"Yan Qian, Xiao Li, Xinyu Li, Xijie Zhang, Qi Yuan, Zhengxia Wang, Minghun Zhang, Mao Huang, Ningfei Ji","doi":"10.1080/13510002.2024.2354625","DOIUrl":"10.1080/13510002.2024.2354625","url":null,"abstract":"<p><p>Deficiency of TOM5, a mitochondrial protein, causes organizing pneumonia (OP) in mice. The clinical significance and mechanisms of TOM5 in the pathogenesis of OP remain elusive. We demonstrated that TOM5 was significantly increased in the lung tissues of OP patients, which was positively correlated with the collagen deposition. In a bleomycin-induced murine model of chronic OP, increased TOM5 was in line with lung fibrosis. In vitro, TOM5 regulated the mitochondrial membrane potential in alveolar epithelial cells. TOM5 reduced the proportion of early apoptotic cells and promoted cell proliferation. Our study shed light on the roles of TOM5 in OP.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11134018/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141093979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信