Inhibition of oxidative stress and the Neuropilin-2-induced neuroinflammatory pathway by EMO ameliorates epileptic seizures in the preclinical model of epilepsy.
Haiting Li, Yujia Zhang, Yangyang Zhang, Yuehui Li, Huifang Wang
{"title":"Inhibition of oxidative stress and the Neuropilin-2-induced neuroinflammatory pathway by EMO ameliorates epileptic seizures in the preclinical model of epilepsy.","authors":"Haiting Li, Yujia Zhang, Yangyang Zhang, Yuehui Li, Huifang Wang","doi":"10.1080/13510002.2025.2547405","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Epilepsy is a chronic neurological condition characterized by recurrent seizures, often linked to neuroinflammation and oxidative stress that exacerbate neuronal injury. Neuropilin-2 (NRP2) and Nuclear Factor-Kappa B (NF-κB) are key mediators in these pathways. This study evaluated the neuroprotective effects of emodin, a bioactive anthraquinone with antioxidant and anti-inflammatory properties, in a pentylenetetrazole (PTZ)-induced mouse model of epilepsy.</p><p><strong>Methods: </strong>Seizure severity, anxiety-like behavior (Elevated Plus Maze), and cognitive function (Morris Water Maze) were assessed. Oxidative stress markers including glutathione (GSH), catalase, lipid peroxidation (LPO), and glutathione-S-transferase (GST) were measured. Expression of NRP2, NF-κB, and proinflammatory cytokines (TNF-α, IL-6) was quantified. Docking studies examined emodin's binding affinity to NRP2 and NF-κB.</p><p><strong>Results: </strong>Emodin (200 mg/kg) significantly reduced seizure frequency and severity, improved anxiety-like behavior, and enhanced cognition. Biochemical analysis showed restored oxidative balance, with increased GSH and catalase activity and reduced LPO and GST dysfunction. Molecular studies revealed downregulation of NRP2, NF-κB, and cytokines. Docking confirmed strong binding affinity to NRP2 and NF-κB.</p><p><strong>Conclusion: </strong>Emodin alleviates oxidative stress and neuroinflammation by modulating NRP2 and NF-κB pathways, suggesting therapeutic potential in epilepsy.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"30 1","pages":"2547405"},"PeriodicalIF":7.4000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12477776/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Report","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/13510002.2025.2547405","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Epilepsy is a chronic neurological condition characterized by recurrent seizures, often linked to neuroinflammation and oxidative stress that exacerbate neuronal injury. Neuropilin-2 (NRP2) and Nuclear Factor-Kappa B (NF-κB) are key mediators in these pathways. This study evaluated the neuroprotective effects of emodin, a bioactive anthraquinone with antioxidant and anti-inflammatory properties, in a pentylenetetrazole (PTZ)-induced mouse model of epilepsy.
Methods: Seizure severity, anxiety-like behavior (Elevated Plus Maze), and cognitive function (Morris Water Maze) were assessed. Oxidative stress markers including glutathione (GSH), catalase, lipid peroxidation (LPO), and glutathione-S-transferase (GST) were measured. Expression of NRP2, NF-κB, and proinflammatory cytokines (TNF-α, IL-6) was quantified. Docking studies examined emodin's binding affinity to NRP2 and NF-κB.
Results: Emodin (200 mg/kg) significantly reduced seizure frequency and severity, improved anxiety-like behavior, and enhanced cognition. Biochemical analysis showed restored oxidative balance, with increased GSH and catalase activity and reduced LPO and GST dysfunction. Molecular studies revealed downregulation of NRP2, NF-κB, and cytokines. Docking confirmed strong binding affinity to NRP2 and NF-κB.
Conclusion: Emodin alleviates oxidative stress and neuroinflammation by modulating NRP2 and NF-κB pathways, suggesting therapeutic potential in epilepsy.
期刊介绍:
Redox Report is a multidisciplinary peer-reviewed open access journal focusing on the role of free radicals, oxidative stress, activated oxygen, perioxidative and redox processes, primarily in the human environment and human pathology. Relevant papers on the animal and plant environment, biology and pathology will also be included.
While emphasis is placed upon methodological and intellectual advances underpinned by new data, the journal offers scope for review, hypotheses, critiques and other forms of discussion.