Xiang Ma, Zhen Li, Hengwei Ma, Kun Jiang, Bao Chen, Weiquan Wang, Ziqiang Zhu, Jianqiang Wang, Zuozhang Yang, Wang Yunqing, Suwei Dong
{"title":"鱼藤酮通过ROS/Ca2+/AMPK通路调节ZO-2的表达和定位,从而抑制骨肉瘤转移。","authors":"Xiang Ma, Zhen Li, Hengwei Ma, Kun Jiang, Bao Chen, Weiquan Wang, Ziqiang Zhu, Jianqiang Wang, Zuozhang Yang, Wang Yunqing, Suwei Dong","doi":"10.1080/13510002.2025.2493556","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pulmonary metastases in osteosarcoma (OS) are associated with a poor prognosis. Rotenone has shown anti-cancer activity. However, its effects on metastasis and the underlying mechanisms remain unknown. This study investigated the potential use of Rotenone for OS treatment.</p><p><strong>Methods: </strong>The effect of Rotenone and ROS/Ca<sup>2+</sup>/AMPK/ZO-2 pathway on metastasis and EMT was evaluated by Western blot, Transwell and Wound healing. Flow cytometer was employed to measure the intracellular Ros and Ca<sup>2+</sup> levels. The subcellular location of ZO-2 was detected by IF, interaction between AMPK and ZO-2 were examined by Co-IP. Then, subcutaneous tumor and metastasis models were used to evaluate the function of Rotenone in OS metastasis.</p><p><strong>Results: </strong>Rotenone-induced ROS led to increased intracellular Ca<sup>2+</sup>, which promoted the EMT of OS cells through activation of AMPK and ZO-2 nuclear translocation. Inhibition of ROS production decreased intracellular Ca<sup>2+</sup>, restraining AMPK activity. Knock-down of ZO-2 significantly suppressed the anti-metastasis effects of Rotenone in OS cells. Moreover, Rotenone elevated p-AMPK and ZO-2 expression but inhibited EMT and lung metastasis in <i>vivo</i>.<b>Conclusion</b> These results provide evidence supporting an anti-metastatic effect of Rotenone. These findings support the use of Rotenone in the prevention of OS metastasis.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"30 1","pages":"2493556"},"PeriodicalIF":5.2000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12010658/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rotenone inhibited osteosarcoma metastasis by modulating ZO-2 expression and location via the ROS/Ca<sup>2+</sup>/AMPK pathway.\",\"authors\":\"Xiang Ma, Zhen Li, Hengwei Ma, Kun Jiang, Bao Chen, Weiquan Wang, Ziqiang Zhu, Jianqiang Wang, Zuozhang Yang, Wang Yunqing, Suwei Dong\",\"doi\":\"10.1080/13510002.2025.2493556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Pulmonary metastases in osteosarcoma (OS) are associated with a poor prognosis. Rotenone has shown anti-cancer activity. However, its effects on metastasis and the underlying mechanisms remain unknown. This study investigated the potential use of Rotenone for OS treatment.</p><p><strong>Methods: </strong>The effect of Rotenone and ROS/Ca<sup>2+</sup>/AMPK/ZO-2 pathway on metastasis and EMT was evaluated by Western blot, Transwell and Wound healing. Flow cytometer was employed to measure the intracellular Ros and Ca<sup>2+</sup> levels. The subcellular location of ZO-2 was detected by IF, interaction between AMPK and ZO-2 were examined by Co-IP. Then, subcutaneous tumor and metastasis models were used to evaluate the function of Rotenone in OS metastasis.</p><p><strong>Results: </strong>Rotenone-induced ROS led to increased intracellular Ca<sup>2+</sup>, which promoted the EMT of OS cells through activation of AMPK and ZO-2 nuclear translocation. Inhibition of ROS production decreased intracellular Ca<sup>2+</sup>, restraining AMPK activity. Knock-down of ZO-2 significantly suppressed the anti-metastasis effects of Rotenone in OS cells. Moreover, Rotenone elevated p-AMPK and ZO-2 expression but inhibited EMT and lung metastasis in <i>vivo</i>.<b>Conclusion</b> These results provide evidence supporting an anti-metastatic effect of Rotenone. These findings support the use of Rotenone in the prevention of OS metastasis.</p>\",\"PeriodicalId\":21096,\"journal\":{\"name\":\"Redox Report\",\"volume\":\"30 1\",\"pages\":\"2493556\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12010658/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Report\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/13510002.2025.2493556\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Report","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/13510002.2025.2493556","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Rotenone inhibited osteosarcoma metastasis by modulating ZO-2 expression and location via the ROS/Ca2+/AMPK pathway.
Background: Pulmonary metastases in osteosarcoma (OS) are associated with a poor prognosis. Rotenone has shown anti-cancer activity. However, its effects on metastasis and the underlying mechanisms remain unknown. This study investigated the potential use of Rotenone for OS treatment.
Methods: The effect of Rotenone and ROS/Ca2+/AMPK/ZO-2 pathway on metastasis and EMT was evaluated by Western blot, Transwell and Wound healing. Flow cytometer was employed to measure the intracellular Ros and Ca2+ levels. The subcellular location of ZO-2 was detected by IF, interaction between AMPK and ZO-2 were examined by Co-IP. Then, subcutaneous tumor and metastasis models were used to evaluate the function of Rotenone in OS metastasis.
Results: Rotenone-induced ROS led to increased intracellular Ca2+, which promoted the EMT of OS cells through activation of AMPK and ZO-2 nuclear translocation. Inhibition of ROS production decreased intracellular Ca2+, restraining AMPK activity. Knock-down of ZO-2 significantly suppressed the anti-metastasis effects of Rotenone in OS cells. Moreover, Rotenone elevated p-AMPK and ZO-2 expression but inhibited EMT and lung metastasis in vivo.Conclusion These results provide evidence supporting an anti-metastatic effect of Rotenone. These findings support the use of Rotenone in the prevention of OS metastasis.
期刊介绍:
Redox Report is a multidisciplinary peer-reviewed open access journal focusing on the role of free radicals, oxidative stress, activated oxygen, perioxidative and redox processes, primarily in the human environment and human pathology. Relevant papers on the animal and plant environment, biology and pathology will also be included.
While emphasis is placed upon methodological and intellectual advances underpinned by new data, the journal offers scope for review, hypotheses, critiques and other forms of discussion.