Redox ReportPub Date : 2024-12-01Epub Date: 2024-11-24DOI: 10.1080/13510002.2024.2430929
Jiao Huang, Yang Zhao, Xi Luo, Yunpeng Luo, Jiemei Ji, Jia Li, Jian Lai, Ziru Liu, Yuanyuan Chen, Yunan Lin, Jingchen Liu
{"title":"Dexmedetomidine inhibits ferroptosis and attenuates sepsis-induced acute kidney injury via activating the Nrf2/SLC7A11/FSP1/CoQ10 pathway.","authors":"Jiao Huang, Yang Zhao, Xi Luo, Yunpeng Luo, Jiemei Ji, Jia Li, Jian Lai, Ziru Liu, Yuanyuan Chen, Yunan Lin, Jingchen Liu","doi":"10.1080/13510002.2024.2430929","DOIUrl":"10.1080/13510002.2024.2430929","url":null,"abstract":"<p><strong>Objectives: </strong>The molecular mechanism underlying the protective effects of DEX against sepsis-induced acute kidney injury (SAKI) remains to be elucidated.</p><p><strong>Methods: </strong>We established S-AKI models in vivo via CLP and in vitro with LPS-induced HK-2 cells.</p><p><strong>Results: </strong>The Nrf2/SLC7A11/FSP1/CoQ10 pathway was inhibited in S-AKI both in vitro and in vivo. The overexpression of Nrf2 inhibited LPS-induced ferroptosis by activating the SLC7A11/FSP1/CoQ10 pathway. DEX ameliorated kidney tissue damage, as determined by a decrease in BUN, Cr, and inflammatory factor levels, along with renal tubule vacuolation and inflammatory cell infiltration in S-AKI mice. Additionally, DEX treatment significantly ameliorated ferroptosis in S-AKI in vitro and in vivo, as indicated by an improvement in mitochondrial shrinkage and disruption of cristae, a decrease in iron, ROS, MDA, and 4-HNE levels, and an increase in GSH and GPX4 levels. Mechanistically, DEX treatment restored the reduction of Nrf2 expression and nuclear translocation in S-AKI, as well as, the levels of downstream SLC7A11, FSP1, and CoQ10. Knocking down Nrf2 in vitro and administering brusatol in vivo eliminated the protective effect of DEX against S-AKI.</p><p><strong>Conclusions: </strong>DEX mitigated ferroptosis and attenuated S-AKI by activating the Nrf2/SLC7A11/FSP1/CoQ10 pathway. Abbreviation: CLP: Cecal ligation puncture; LPS: Lipopolysaccharide; Nrf2: Nuclear factor-erythroid- 2-related factor 2; SLC7A11: Solute carrier family 7 member 11; FSP1: Ferroptosis suppressor protein 1; CoQ10: Coenzyme Q10; BUN: Blood urea nitrogen; Cr: Serum creatinine; ROS: Reactive oxygen species; MDA: Malondialdehyde; 4-HNE: 4-hydroxynonenal; GSH: Hlutathione; GPX4: Glutathione peroxidase 4.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"29 1","pages":"2430929"},"PeriodicalIF":5.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587839/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Activation of the Nrf2/Keap1 signaling pathway mediates the neuroprotective effect of Perillyl alcohol against cerebral hypoxic-ischemic damage in neonatal rats.","authors":"Yu Fang, Yihui Zheng, Qiqi Gao, Mengdan Pang, Yiqing Wu, Xiaoli Feng, Xiaoyue Tao, Yingying Hu, Zhenlang Lin, Wei Lin","doi":"10.1080/13510002.2024.2394714","DOIUrl":"https://doi.org/10.1080/13510002.2024.2394714","url":null,"abstract":"<p><p>Neonatal hypoxic-ischemic encephalopathy (HIE) is a severe disease with a poor prognosis, whose clinical treatment is still limited to therapeutic hypothermia with limited efficacy. Perillyl alcohol (POH), a natural monoterpene found in various plant essential oils, has shown neuroprotective properties, though its effects on HIE are not well understood. This study investigates the neuroprotective effects of POH on HIE both in vitro and in vivo. We established an in vitro model using glucose deprivation and hypoxia/reperfusion (OGD/R) in PC12 cells, alongside an in vivo model via the modified Rice-Vannucci method. Results indicated that POH acted as an indirect antioxidant, reducing inducible nitric oxide synthase and malondialdehyde production, maintaining content of antioxidant molecules and enzymes in OGD/R-induced PC12 cells. In vivo, POH remarkably lessened infarct volume, reduced cerebral edema, accelerated tissue regeneration, and blocked reactive astrogliosis after hypoxic-ischemic brain injury. POH exerted antiapoptotic activities through both the intrinsic and extrinsic apoptotic pathways. Mechanistically, POH activated Nrf2 and inactivated its negative regulator Keap1. The use of ML385, a Nrf2 inhibitor, reversed these effects. Overall, POH mitigates neuronal damage in HIE by combating oxidative stress, reducing inflammation, and inhibiting apoptosis via the Nrf2/Keap1 pathway, suggesting its potential for HIE treatment.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"29 1","pages":"2394714"},"PeriodicalIF":5.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407389/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142294174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Redox ReportPub Date : 2024-12-01Epub Date: 2024-09-23DOI: 10.1080/13510002.2024.2404794
Zeng Zhang, Fengzhu Zhou, Min Lu, Duanchun Zhang, Xinyi Zhang, Siyu Xu, Yanming He
{"title":"WTAP-mediated m<sup>6</sup>A modification of TRIM22 promotes diabetic nephropathy by inducing mitochondrial dysfunction via ubiquitination of OPA1.","authors":"Zeng Zhang, Fengzhu Zhou, Min Lu, Duanchun Zhang, Xinyi Zhang, Siyu Xu, Yanming He","doi":"10.1080/13510002.2024.2404794","DOIUrl":"10.1080/13510002.2024.2404794","url":null,"abstract":"<p><strong>Objectives: </strong>Diabetic nephropathy (DN) is one of the most serious microvascular complications of diabetes and is the most common cause of end-stage renal disease. Tripartite motif-containing (TRIM) proteins are a large family of E3 ubiquitin ligases that contribute to protein quality control by regulating the ubiquitin - proteasome system. However, the detailed mechanisms through which various TRIM proteins regulate downstream events have not yet been fully elucidated. The current research aimed to determine the function and mechanism of TRIM22 in DN.</p><p><strong>Methods: </strong>DN models were established by inducing HK-2 cells using high glucose (HG) and diabetic mice (db/db mice). Cell viability, apoptosis, mitochondrial reactive oxygen species, and mitochondrial membrane potential were detected by Cell Counting Kit-8 and flow cytometry, respectively. Pathological changes were evaluated using hematoxylin and eosin, periodic acid schiff and Masson staining. The binding between TRIM22 and optic atrophy 1 (OPA1) was analyzed using co-immunoprecipitation. The m<sup>6</sup>A level of TRIM22 5'UTR was detected using RNA immunoprecipitation.</p><p><strong>Results: </strong>TRIM22 was highly expressed in patients with DN. TRIM22 silencing inhibited HG-induced apoptosis and mitochondrial dysfunction in HK-2 cells. Promoting mitochondrial fusion alleviated TRIM22 overexpression-induced cell apoptosis, mitochondrial dysfunction in HK-2 cells, and kidney damage in mice. Mechanistically, TRIM22 interacted with OPA1 and induced its ubiquitination. Wilms tumor 1-associating protein (WTAP) promoted m<sup>6</sup>A modification of TRIM22 through the m<sup>6</sup>A reader insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1).</p><p><strong>Discussion: </strong>TRIM22 silencing inhibited the progression of DN by interacting with OPA1 and inducing its ubiquitination. Furthermore, WTAP promoted m<sup>6</sup>A modification of TRIM22 via IGF2BP1.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"29 1","pages":"2404794"},"PeriodicalIF":5.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423538/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142308523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Redox ReportPub Date : 2024-04-17DOI: 10.1080/13510002.2024.2341470
Jintao Lou, Fan Wu, Wuhui He, Rui Hu, Ziyi Cai, Guisheng Chen, Wenji Zhao, Zhigang Zhang, Yu Si
{"title":"Hesperidin activates Nrf2 to protect cochlear hair cells from cisplatin-induced damage","authors":"Jintao Lou, Fan Wu, Wuhui He, Rui Hu, Ziyi Cai, Guisheng Chen, Wenji Zhao, Zhigang Zhang, Yu Si","doi":"10.1080/13510002.2024.2341470","DOIUrl":"https://doi.org/10.1080/13510002.2024.2341470","url":null,"abstract":"Cisplatin is widely employed in clinical oncology as an anticancer chemotherapy drug in clinical practice and is known for its severe ototoxic side effects. Prior research indicates that the accumu...","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"29 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140608768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Zinc ameliorates acrylamide-induced oxidative stress and apoptosis in testicular cells via Nrf2/HO-1/NfkB and Bax/Bcl2 signaling pathway","authors":"Ayodeji Johnson Ajibare, Adeyemi Fatai Odetayo, Olabode Oluwadare Akintoye, Luqman Aribidesi Olayaki","doi":"10.1080/13510002.2024.2341537","DOIUrl":"https://doi.org/10.1080/13510002.2024.2341537","url":null,"abstract":"Acrylamide is a toxic substance formed in some foods that require high-temperature cooking processes and has been implicated as a gonadotoxic agent. Zinc, on the other hand, is a known antioxidant ...","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"12 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140617781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Redox ReportPub Date : 2024-04-16DOI: 10.1080/13510002.2024.2333096
Zhou-Shan Tao, Xing-Jing Wu, Min Yang, Cai-Liang Shen
{"title":"Astaxanthin prevents bone loss in osteoporotic rats with palmitic acid through suppressing oxidative stress","authors":"Zhou-Shan Tao, Xing-Jing Wu, Min Yang, Cai-Liang Shen","doi":"10.1080/13510002.2024.2333096","DOIUrl":"https://doi.org/10.1080/13510002.2024.2333096","url":null,"abstract":"The study aimed to assess the role of Astaxanthin (ATX) in palmitic acid(PA) -induced bone loss in Ovariectomized(OVX) rats.In the OVX rat model, we observed that PA affects bone metabolism and acc...","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"57 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140586617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Redox ReportPub Date : 2024-04-05DOI: 10.1080/13510002.2024.2333619
Miroslav Čolić, Sandra Kraljević Pavelić, Željka Peršurić, Andrea Agaj, Aleksandar Bulog, Krešimir Pavelić
{"title":"Enhancing the bioavailability and activity of natural antioxidants with nanobubbles and nanoparticles","authors":"Miroslav Čolić, Sandra Kraljević Pavelić, Željka Peršurić, Andrea Agaj, Aleksandar Bulog, Krešimir Pavelić","doi":"10.1080/13510002.2024.2333619","DOIUrl":"https://doi.org/10.1080/13510002.2024.2333619","url":null,"abstract":"Objectives: Many polyphenols such as EGCG from green tea, curcumin, apigenin, resveratrol or the alkaloid berberine show in-vitro activity that is much higher than FDA and EU approved drugs. And ye...","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"57 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140586482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Redox ReportPub Date : 2023-12-18DOI: 10.1080/13510002.2023.2289740
Catalina Rojas-Solé, Víctor Pinilla-González, José Lillo-Moya, Tommy González-Fernández, Luciano Saso, Ramón Rodrigo
{"title":"Integrated approach to reducing polypharmacy in older people: exploring the role of oxidative stress and antioxidant potential therapy","authors":"Catalina Rojas-Solé, Víctor Pinilla-González, José Lillo-Moya, Tommy González-Fernández, Luciano Saso, Ramón Rodrigo","doi":"10.1080/13510002.2023.2289740","DOIUrl":"https://doi.org/10.1080/13510002.2023.2289740","url":null,"abstract":"Increased life expectancy, attributed to improved access to healthcare and drug development, has led to an increase in multimorbidity, a key contributor to polypharmacy. Polypharmacy is characteris...","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"15 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138715058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Redox ReportPub Date : 2023-12-01Epub Date: 2023-12-02DOI: 10.1080/13510002.2023.2272384
Claudionei Roessler, Karen Cristine Silva de Oliveira, Auricélia Xavier de Oliveira Portella, Paulo Cezar Nunes Fortes, Franciéle Romero Machado, Stífani Machado Araujo, Marina Prigol, Léia Carolina Lucio, Dalila Moter Benvegnú, Lirane Elize Defante Ferreto
{"title":"Evaluation of oxidative stress level: reactive oxygen species, reduced glutathione, and D-dimer in patients hospitalized due to COVID-19.","authors":"Claudionei Roessler, Karen Cristine Silva de Oliveira, Auricélia Xavier de Oliveira Portella, Paulo Cezar Nunes Fortes, Franciéle Romero Machado, Stífani Machado Araujo, Marina Prigol, Léia Carolina Lucio, Dalila Moter Benvegnú, Lirane Elize Defante Ferreto","doi":"10.1080/13510002.2023.2272384","DOIUrl":"10.1080/13510002.2023.2272384","url":null,"abstract":"<p><p>Elevated D-dimer levels at hospital admission may also indicate a higher likelihood of progressing to a severe or critical state. This study aimed to assess reactive oxygen species (ROS), non-enzymatic antioxidant reduced glutathione (GSH), and D-dimer levels in COVID-19 patients upon admission, examining their association with mortality outcomes. Data was collected from the medical records of 170 patients hospitalized in a referral hospital unit between March 2020 and December 2021. Patients were divided into two groups: the ward bed group (<i>n</i> = 87), comprising 51% with moderate clinical conditions, and the intensive care unit (ICU) group (<i>n</i> = 83), comprising 49% with severe conditions. The mean age was 59.4 years, with a male predominance of 52.4%. The overall death rate was 43%, with 30.6% in the moderate group and 69.4% in the severe group. The average time from symptom onset to hospitalization was 6.42 days. Results showed that non-survivors had high D-dimer and ROS counts, longer ICU stays, and worse saturation levels at admission. In conclusion, elevated ROS and D-dimer levels may contribute to worse outcomes in critically ill patients, potentially serving as specific and sensitive predictors of poor outcomes upon admission.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"28 1","pages":"1-6"},"PeriodicalIF":3.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11001273/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138470753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}