ROS-induced dramatic lipid changes in Arabidopsis.

IF 5.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tianlin Jin, Xue Wang, Zhuying Deng, Xiaofang Liu, Dacheng Liang
{"title":"ROS-induced dramatic lipid changes in <i>Arabidopsis</i>.","authors":"Tianlin Jin,&nbsp;Xue Wang,&nbsp;Zhuying Deng,&nbsp;Xiaofang Liu,&nbsp;Dacheng Liang","doi":"10.1080/13510002.2021.2002001","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objectives:</b> The beneficial role of ROS was probably in promoting intercellular communication by modifying membrane constituents [Liang D. A salutary role of reactive oxygen species in intercellular tunnel-mediated communication. Front Cell Dev Biol. 2018;6:2]. We investigated how the membrane lipids were responding to ROS and ROS inhibitors.<b>Methods:</b> To examine how ROS affected the lipid profiles, we used thin-layer chromatography to characterize lipid profiles in <i>Arabidopsis</i> plants. Then, the confocal microscopy imaging was used to confirm the change of membrane lipid in a plasma membrane marker line exposed to ROS and ROS inhibitors.<b>Results:</b> We found the relative contents of most lipids in H<sub>2</sub>O<sub>2</sub>-treated <i>Arabidopsis</i> plants were increased in roots, rather than in shoots. The increased fluorescent signal of membrane marker induced by H<sub>2</sub>O<sub>2</sub> was mainly enriched in the conductive parts of roots. Several ROS inhibitors also strongly affected the lipid profiles. Among them, diethyldithiocarbamate (DDC) can progressively change the lipid profiles with treatment going on. Membrane marker signal was mainly accumulated in the root tips and epidermal cells after treatment by DDC.<b>Discussion:</b> H<sub>2</sub>O<sub>2</sub> may enhance intercellular communication by inducing different lipid species in the conductive parts of roots. The lipid profiles were widely responding to various ROS reagents and might play a role in intercellular signaling.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8583927/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Report","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/13510002.2021.2002001","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

Objectives: The beneficial role of ROS was probably in promoting intercellular communication by modifying membrane constituents [Liang D. A salutary role of reactive oxygen species in intercellular tunnel-mediated communication. Front Cell Dev Biol. 2018;6:2]. We investigated how the membrane lipids were responding to ROS and ROS inhibitors.Methods: To examine how ROS affected the lipid profiles, we used thin-layer chromatography to characterize lipid profiles in Arabidopsis plants. Then, the confocal microscopy imaging was used to confirm the change of membrane lipid in a plasma membrane marker line exposed to ROS and ROS inhibitors.Results: We found the relative contents of most lipids in H2O2-treated Arabidopsis plants were increased in roots, rather than in shoots. The increased fluorescent signal of membrane marker induced by H2O2 was mainly enriched in the conductive parts of roots. Several ROS inhibitors also strongly affected the lipid profiles. Among them, diethyldithiocarbamate (DDC) can progressively change the lipid profiles with treatment going on. Membrane marker signal was mainly accumulated in the root tips and epidermal cells after treatment by DDC.Discussion: H2O2 may enhance intercellular communication by inducing different lipid species in the conductive parts of roots. The lipid profiles were widely responding to various ROS reagents and might play a role in intercellular signaling.

ros诱导拟南芥脂质发生剧烈变化。
目的:活性氧的有益作用可能是通过修饰细胞膜成分来促进细胞间通讯[Liang d]。活性氧在细胞间通道介导的通讯中的有益作用。生物医学工程学报,2018;6 (2);我们研究了膜脂对ROS和ROS抑制剂的反应。方法:为了研究ROS如何影响脂质谱,我们使用薄层色谱法表征拟南芥植物的脂质谱。然后,用共聚焦显微镜成像来确认暴露于ROS和ROS抑制剂的质膜标记系的膜脂的变化。结果:经h2o2处理的拟南芥植株中,大部分脂质相对含量在根中增加,而在茎中没有增加。H2O2诱导的膜标记荧光信号增强主要富集在根的导电部位。几种ROS抑制剂也强烈影响脂质谱。其中,二乙基二硫代氨基甲酸酯(DDC)可以随着治疗的进行而逐渐改变脂质谱。经DDC处理后,膜标记信号主要在根尖和表皮细胞中积累。讨论:H2O2可能通过在根的传导部位诱导不同的脂质种类来促进细胞间的通讯。脂质谱广泛响应各种ROS试剂,并可能在细胞间信号传导中发挥作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Redox Report
Redox Report 生物-生化与分子生物学
CiteScore
6.10
自引率
0.00%
发文量
28
审稿时长
>12 weeks
期刊介绍: Redox Report is a multidisciplinary peer-reviewed open access journal focusing on the role of free radicals, oxidative stress, activated oxygen, perioxidative and redox processes, primarily in the human environment and human pathology. Relevant papers on the animal and plant environment, biology and pathology will also be included. While emphasis is placed upon methodological and intellectual advances underpinned by new data, the journal offers scope for review, hypotheses, critiques and other forms of discussion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信