{"title":"胆红素通过缓解香烟烟雾提取物导致的巨噬细胞线粒体功能障碍来调节细胞死亡类型。","authors":"Jingjing Wei, Yuan Tian, Jinshu Wei, Meiqi Guan, Xiaoya Yu, Jianing Xie, Guoquan Fan","doi":"10.1080/13510002.2024.2382946","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To explore the effects and mechanisms of bilirubin on mitochondrial function and type of macrophage cell death after exposure to cigarette smoke extract (CSE).</p><p><strong>Methods: </strong>RAW264.7 macrophages were treated with different concentrations of CSE and bilirubin solutions and divided into four groups: control, CSE, bilirubin, and bilirubin + CSE groups. The necrotic and apoptotic states of the macrophages were determined using an Annexin V-fluorescein 5-isothiocyanate/propidium iodide (FITC/PI) staining kit. Cytoplasmic NOD-like receptor family, pyrin domain containing 3 (NLRP3) expression in macrophages was detected by immunofluorescence and the levels of IL-1β and IL-18 in the supernatants of culture medium were detected by enzyme linked immunosorbent assay (ELISA) test. A JC-1 mitochondrial membrane potential detection kit was used to assess mitochondrial membrane damage and the adenosine triphosphate (ATP) assay kit was used to determine intracellular ATP levels. After the macrophages were stained with reactive oxygen species (ROS) specific dye, 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA), the fluorescence intensity and proportion of ROS-positive macrophages were measured using flow cytometry.</p><p><strong>Results: </strong>We observed that compared with those of 0 μM (control group), concentrations of 5, 10, or 20 μΜ bilirubin significantly decreased cell viability, which was increased by bilirubin exposure below 1 μM. The effect of CSE on macrophage viability was concentration- and time-dependent. Bilirubin of 0.2 μM could alleviate the inhibition of macrophage viability caused by 5% CSE. In addition, bilirubin intervention could reduce the occurrence of necrosis and pyroptosis to a certain extent.</p><p><strong>Conclusions: </strong>CSE could cause mitochondrial dysfunction in macrophages, as demonstrated by a decrease in mitochondrial membrane potential and intracellular ATP levels and an increase in ROS production, while bilirubin could relieve mitochondrial dysfunction caused by CSE.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"29 1","pages":"2382946"},"PeriodicalIF":5.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288206/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bilirubin regulates cell death type by alleviating macrophage mitochondrial dysfunction caused by cigarette smoke extract.\",\"authors\":\"Jingjing Wei, Yuan Tian, Jinshu Wei, Meiqi Guan, Xiaoya Yu, Jianing Xie, Guoquan Fan\",\"doi\":\"10.1080/13510002.2024.2382946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>To explore the effects and mechanisms of bilirubin on mitochondrial function and type of macrophage cell death after exposure to cigarette smoke extract (CSE).</p><p><strong>Methods: </strong>RAW264.7 macrophages were treated with different concentrations of CSE and bilirubin solutions and divided into four groups: control, CSE, bilirubin, and bilirubin + CSE groups. The necrotic and apoptotic states of the macrophages were determined using an Annexin V-fluorescein 5-isothiocyanate/propidium iodide (FITC/PI) staining kit. Cytoplasmic NOD-like receptor family, pyrin domain containing 3 (NLRP3) expression in macrophages was detected by immunofluorescence and the levels of IL-1β and IL-18 in the supernatants of culture medium were detected by enzyme linked immunosorbent assay (ELISA) test. A JC-1 mitochondrial membrane potential detection kit was used to assess mitochondrial membrane damage and the adenosine triphosphate (ATP) assay kit was used to determine intracellular ATP levels. After the macrophages were stained with reactive oxygen species (ROS) specific dye, 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA), the fluorescence intensity and proportion of ROS-positive macrophages were measured using flow cytometry.</p><p><strong>Results: </strong>We observed that compared with those of 0 μM (control group), concentrations of 5, 10, or 20 μΜ bilirubin significantly decreased cell viability, which was increased by bilirubin exposure below 1 μM. The effect of CSE on macrophage viability was concentration- and time-dependent. Bilirubin of 0.2 μM could alleviate the inhibition of macrophage viability caused by 5% CSE. In addition, bilirubin intervention could reduce the occurrence of necrosis and pyroptosis to a certain extent.</p><p><strong>Conclusions: </strong>CSE could cause mitochondrial dysfunction in macrophages, as demonstrated by a decrease in mitochondrial membrane potential and intracellular ATP levels and an increase in ROS production, while bilirubin could relieve mitochondrial dysfunction caused by CSE.</p>\",\"PeriodicalId\":21096,\"journal\":{\"name\":\"Redox Report\",\"volume\":\"29 1\",\"pages\":\"2382946\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288206/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Report\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/13510002.2024.2382946\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Report","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/13510002.2024.2382946","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Bilirubin regulates cell death type by alleviating macrophage mitochondrial dysfunction caused by cigarette smoke extract.
Objectives: To explore the effects and mechanisms of bilirubin on mitochondrial function and type of macrophage cell death after exposure to cigarette smoke extract (CSE).
Methods: RAW264.7 macrophages were treated with different concentrations of CSE and bilirubin solutions and divided into four groups: control, CSE, bilirubin, and bilirubin + CSE groups. The necrotic and apoptotic states of the macrophages were determined using an Annexin V-fluorescein 5-isothiocyanate/propidium iodide (FITC/PI) staining kit. Cytoplasmic NOD-like receptor family, pyrin domain containing 3 (NLRP3) expression in macrophages was detected by immunofluorescence and the levels of IL-1β and IL-18 in the supernatants of culture medium were detected by enzyme linked immunosorbent assay (ELISA) test. A JC-1 mitochondrial membrane potential detection kit was used to assess mitochondrial membrane damage and the adenosine triphosphate (ATP) assay kit was used to determine intracellular ATP levels. After the macrophages were stained with reactive oxygen species (ROS) specific dye, 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA), the fluorescence intensity and proportion of ROS-positive macrophages were measured using flow cytometry.
Results: We observed that compared with those of 0 μM (control group), concentrations of 5, 10, or 20 μΜ bilirubin significantly decreased cell viability, which was increased by bilirubin exposure below 1 μM. The effect of CSE on macrophage viability was concentration- and time-dependent. Bilirubin of 0.2 μM could alleviate the inhibition of macrophage viability caused by 5% CSE. In addition, bilirubin intervention could reduce the occurrence of necrosis and pyroptosis to a certain extent.
Conclusions: CSE could cause mitochondrial dysfunction in macrophages, as demonstrated by a decrease in mitochondrial membrane potential and intracellular ATP levels and an increase in ROS production, while bilirubin could relieve mitochondrial dysfunction caused by CSE.
期刊介绍:
Redox Report is a multidisciplinary peer-reviewed open access journal focusing on the role of free radicals, oxidative stress, activated oxygen, perioxidative and redox processes, primarily in the human environment and human pathology. Relevant papers on the animal and plant environment, biology and pathology will also be included.
While emphasis is placed upon methodological and intellectual advances underpinned by new data, the journal offers scope for review, hypotheses, critiques and other forms of discussion.