Kaiqiang Yang, Yuting Yang, Ting Long, Xiaoxue Wang, Yeke Chen, Chenjiang He, Li Li, Xinbo Yang, Meixiu Jiang, Yichen Hu, Fang Dai, Li Song
{"title":"高同型半胱氨酸血症通过抑制Nrf2/HO-1信号通路加重牙周炎。","authors":"Kaiqiang Yang, Yuting Yang, Ting Long, Xiaoxue Wang, Yeke Chen, Chenjiang He, Li Li, Xinbo Yang, Meixiu Jiang, Yichen Hu, Fang Dai, Li Song","doi":"10.1080/13510002.2025.2475691","DOIUrl":null,"url":null,"abstract":"<p><p>Periodontitis, a common dental illness, causes periodontal tissue inflammation and irreversible bone loss, inevitably resulting in tooth loss. Hyperhomocysteinaemia (HHcy), defined as blood total homocysteine (Hcy) levels greater than 15 µmol/L, is linked to increased cardiovascular disease risk. Mounting evidence indicates a connection between HHcy and periodontitis; however, the underlying processes remain unknown. Herein, we explored the mechanisms by which HHcy exacerbates periodontal tissue inflammation and osteoclast formation. In an animal model of periodontitis treated with HHcy, periodontal attachment loss was aggravated, and both systemic and gingival tissue inflammation levels tended to increase; additionally, antioxidant-related proteins were suppressed and expressed at low levels, whereas oxidative damage-related protein expression increased. In RAW264.7 cells treated with LPS or LPS + Hcy, the LPS + Hcy group presented increased reactive oxygen species (ROS) fluorescence intensity, and Nrf2/HO-1 signalling pathway suppression was associated with inflammatory cytokine (TNF-α) expression. In monocyte osteoclasts treated with Rankl or Rankl + Hcy, the Rankl + Hcy group presented Nrf2/HO-1 signalling pathway suppression, an increase in osteoclast-related proteins (NFATc-1 and CTSK), and a more pronounced osteoclastic phenotype. Therefore, HHcy may exacerbate inflammation severity and osteoclast generation in periodontitis by promoting ROS production and inhibiting the Nrf2/HO-1 signalling pathway.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"30 1","pages":"2475691"},"PeriodicalIF":5.2000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11894757/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hyperhomocysteinaemia aggravates periodontitis by suppressing the Nrf2/HO-1 signalling pathway.\",\"authors\":\"Kaiqiang Yang, Yuting Yang, Ting Long, Xiaoxue Wang, Yeke Chen, Chenjiang He, Li Li, Xinbo Yang, Meixiu Jiang, Yichen Hu, Fang Dai, Li Song\",\"doi\":\"10.1080/13510002.2025.2475691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Periodontitis, a common dental illness, causes periodontal tissue inflammation and irreversible bone loss, inevitably resulting in tooth loss. Hyperhomocysteinaemia (HHcy), defined as blood total homocysteine (Hcy) levels greater than 15 µmol/L, is linked to increased cardiovascular disease risk. Mounting evidence indicates a connection between HHcy and periodontitis; however, the underlying processes remain unknown. Herein, we explored the mechanisms by which HHcy exacerbates periodontal tissue inflammation and osteoclast formation. In an animal model of periodontitis treated with HHcy, periodontal attachment loss was aggravated, and both systemic and gingival tissue inflammation levels tended to increase; additionally, antioxidant-related proteins were suppressed and expressed at low levels, whereas oxidative damage-related protein expression increased. In RAW264.7 cells treated with LPS or LPS + Hcy, the LPS + Hcy group presented increased reactive oxygen species (ROS) fluorescence intensity, and Nrf2/HO-1 signalling pathway suppression was associated with inflammatory cytokine (TNF-α) expression. In monocyte osteoclasts treated with Rankl or Rankl + Hcy, the Rankl + Hcy group presented Nrf2/HO-1 signalling pathway suppression, an increase in osteoclast-related proteins (NFATc-1 and CTSK), and a more pronounced osteoclastic phenotype. Therefore, HHcy may exacerbate inflammation severity and osteoclast generation in periodontitis by promoting ROS production and inhibiting the Nrf2/HO-1 signalling pathway.</p>\",\"PeriodicalId\":21096,\"journal\":{\"name\":\"Redox Report\",\"volume\":\"30 1\",\"pages\":\"2475691\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11894757/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Report\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/13510002.2025.2475691\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Report","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/13510002.2025.2475691","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Hyperhomocysteinaemia aggravates periodontitis by suppressing the Nrf2/HO-1 signalling pathway.
Periodontitis, a common dental illness, causes periodontal tissue inflammation and irreversible bone loss, inevitably resulting in tooth loss. Hyperhomocysteinaemia (HHcy), defined as blood total homocysteine (Hcy) levels greater than 15 µmol/L, is linked to increased cardiovascular disease risk. Mounting evidence indicates a connection between HHcy and periodontitis; however, the underlying processes remain unknown. Herein, we explored the mechanisms by which HHcy exacerbates periodontal tissue inflammation and osteoclast formation. In an animal model of periodontitis treated with HHcy, periodontal attachment loss was aggravated, and both systemic and gingival tissue inflammation levels tended to increase; additionally, antioxidant-related proteins were suppressed and expressed at low levels, whereas oxidative damage-related protein expression increased. In RAW264.7 cells treated with LPS or LPS + Hcy, the LPS + Hcy group presented increased reactive oxygen species (ROS) fluorescence intensity, and Nrf2/HO-1 signalling pathway suppression was associated with inflammatory cytokine (TNF-α) expression. In monocyte osteoclasts treated with Rankl or Rankl + Hcy, the Rankl + Hcy group presented Nrf2/HO-1 signalling pathway suppression, an increase in osteoclast-related proteins (NFATc-1 and CTSK), and a more pronounced osteoclastic phenotype. Therefore, HHcy may exacerbate inflammation severity and osteoclast generation in periodontitis by promoting ROS production and inhibiting the Nrf2/HO-1 signalling pathway.
期刊介绍:
Redox Report is a multidisciplinary peer-reviewed open access journal focusing on the role of free radicals, oxidative stress, activated oxygen, perioxidative and redox processes, primarily in the human environment and human pathology. Relevant papers on the animal and plant environment, biology and pathology will also be included.
While emphasis is placed upon methodological and intellectual advances underpinned by new data, the journal offers scope for review, hypotheses, critiques and other forms of discussion.