Huankai Yao, Ruiqing Wu, Dan Du, Fengwei Ai, Feng Yang, Yan Li, Suhua Qi
{"title":"Flavonoids from <i>Polypodium hastatum</i> as neuroprotective agents attenuate cerebral ischemia/reperfusion injury <i>in vitro</i> and <i>in vivo</i> via activating Nrf2.","authors":"Huankai Yao, Ruiqing Wu, Dan Du, Fengwei Ai, Feng Yang, Yan Li, Suhua Qi","doi":"10.1080/13510002.2024.2440204","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Cerebral ischemic stroke is a leading cause of death worldwide. Though timely reperfusion reduces the infarction size, it exacerbates neuronal apoptosis due to oxidative stress. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor regulating the expression of antioxidant enzymes. Activating Nrf2 gives a therapeutic approach to ischemic stroke.</p><p><strong>Methods: </strong>Herein we explored flavonoids identified from <i>Polypodium hastatum</i> as Nrf2 activators and their protective effects on PC12 cells injured by oxygen and glucose deprivation/restoration (OGD/R) as well as middle cerebral artery occlusion (MCAO) mice.</p><p><strong>Results: </strong>The results showed among these flavonoids, AAKR significantly improved the survival of PC12 cells induced by OGD/R and activated Nrf2 in a Keap1-dependent manner. Further investigations have disclosed AAKR attenuated oxidative stress, mitochondrial dysfunction and following apoptosis resulting from OGD/R. Meanwhile, activation of Nrf2 by AAKR was involved in the protective effects. Finally, it was found that AAKR could protect MCAO mice brains against ischemia/reperfusion injury via activating Nrf2.</p><p><strong>Discussion: </strong>This investigation could provide lead compounds for the discovery of novel Nrf2 activators targeting ischemia/reperfusion injury.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"30 1","pages":"2440204"},"PeriodicalIF":5.2000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Report","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/13510002.2024.2440204","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Flavonoids from Polypodium hastatum as neuroprotective agents attenuate cerebral ischemia/reperfusion injury in vitro and in vivo via activating Nrf2.
Objectives: Cerebral ischemic stroke is a leading cause of death worldwide. Though timely reperfusion reduces the infarction size, it exacerbates neuronal apoptosis due to oxidative stress. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor regulating the expression of antioxidant enzymes. Activating Nrf2 gives a therapeutic approach to ischemic stroke.
Methods: Herein we explored flavonoids identified from Polypodium hastatum as Nrf2 activators and their protective effects on PC12 cells injured by oxygen and glucose deprivation/restoration (OGD/R) as well as middle cerebral artery occlusion (MCAO) mice.
Results: The results showed among these flavonoids, AAKR significantly improved the survival of PC12 cells induced by OGD/R and activated Nrf2 in a Keap1-dependent manner. Further investigations have disclosed AAKR attenuated oxidative stress, mitochondrial dysfunction and following apoptosis resulting from OGD/R. Meanwhile, activation of Nrf2 by AAKR was involved in the protective effects. Finally, it was found that AAKR could protect MCAO mice brains against ischemia/reperfusion injury via activating Nrf2.
Discussion: This investigation could provide lead compounds for the discovery of novel Nrf2 activators targeting ischemia/reperfusion injury.
期刊介绍:
Redox Report is a multidisciplinary peer-reviewed open access journal focusing on the role of free radicals, oxidative stress, activated oxygen, perioxidative and redox processes, primarily in the human environment and human pathology. Relevant papers on the animal and plant environment, biology and pathology will also be included.
While emphasis is placed upon methodological and intellectual advances underpinned by new data, the journal offers scope for review, hypotheses, critiques and other forms of discussion.