MEGF9通过激活AMPK通路阻止脂多糖诱导的心功能障碍。

IF 5.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Redox Report Pub Date : 2025-12-01 Epub Date: 2024-12-31 DOI:10.1080/13510002.2024.2435252
Zhili Jin, Xianqing Li, Huixia Liu, Tao He, Wanli Jiang, Li Peng, Xiaoyan Wu, Ming Chen, Yongzhen Fan, Zhibing Lu, Di Fan, Hairong Wang
{"title":"MEGF9通过激活AMPK通路阻止脂多糖诱导的心功能障碍。","authors":"Zhili Jin, Xianqing Li, Huixia Liu, Tao He, Wanli Jiang, Li Peng, Xiaoyan Wu, Ming Chen, Yongzhen Fan, Zhibing Lu, Di Fan, Hairong Wang","doi":"10.1080/13510002.2024.2435252","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Inflammation and oxidative damage play critical roles in the pathogenesis of sepsis-induced cardiac dysfunction. Multiple EGF-like domains 9 (MEGF9) is essential for cell homeostasis; however, its role and mechanism in sepsis-induced cardiac injury and impairment remain unclear.</p><p><strong>Methods: </strong>Adenoviral and adeno-associated viral vectors were applied to overexpress or knock down the expression of MEGF9 in vivo and in vitro. To stimulate septic injury, cardiomyocytes and mice were treated lipopolysaccharide (LPS). To clarify the necessity of AMP-activated protein kinase (AMPK), global AMPK knockout mice were used.</p><p><strong>Results: </strong>We found that MEGF9 expressions were reduced in cardiomyocytes and mice by LPS stimulation. Compared with negative controls, plasma MEGF9 levels were also decreased in septic patients, and negatively correlated with LPS-induced cardiac dysfunction. In addition, MEGF9 overexpression attenuated, while MEGF9 knockdown aggravated LPS-induced inflammation and oxidative damage in vivo and in vitro, thereby regulating LPS-induced cardiac injury and impairment. Mechanistic studies revealed that MEGF9 overexpression alleviated LPS-induced cardiac dysfunction through activating AMPK pathway.</p><p><strong>Conclusion: </strong>We for the first time demonstrate that MEGF9 prevents LPS-related inflammation, oxidative damage and cardiac injury through activating AMPK pathway, and provide a proof-of-concept for the treatment of LPS-induced cardiac dysfunction by targeting MEGF9.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"30 1","pages":"2435252"},"PeriodicalIF":5.2000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MEGF9 prevents lipopolysaccharide-induced cardiac dysfunction through activating AMPK pathway.\",\"authors\":\"Zhili Jin, Xianqing Li, Huixia Liu, Tao He, Wanli Jiang, Li Peng, Xiaoyan Wu, Ming Chen, Yongzhen Fan, Zhibing Lu, Di Fan, Hairong Wang\",\"doi\":\"10.1080/13510002.2024.2435252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Inflammation and oxidative damage play critical roles in the pathogenesis of sepsis-induced cardiac dysfunction. Multiple EGF-like domains 9 (MEGF9) is essential for cell homeostasis; however, its role and mechanism in sepsis-induced cardiac injury and impairment remain unclear.</p><p><strong>Methods: </strong>Adenoviral and adeno-associated viral vectors were applied to overexpress or knock down the expression of MEGF9 in vivo and in vitro. To stimulate septic injury, cardiomyocytes and mice were treated lipopolysaccharide (LPS). To clarify the necessity of AMP-activated protein kinase (AMPK), global AMPK knockout mice were used.</p><p><strong>Results: </strong>We found that MEGF9 expressions were reduced in cardiomyocytes and mice by LPS stimulation. Compared with negative controls, plasma MEGF9 levels were also decreased in septic patients, and negatively correlated with LPS-induced cardiac dysfunction. In addition, MEGF9 overexpression attenuated, while MEGF9 knockdown aggravated LPS-induced inflammation and oxidative damage in vivo and in vitro, thereby regulating LPS-induced cardiac injury and impairment. Mechanistic studies revealed that MEGF9 overexpression alleviated LPS-induced cardiac dysfunction through activating AMPK pathway.</p><p><strong>Conclusion: </strong>We for the first time demonstrate that MEGF9 prevents LPS-related inflammation, oxidative damage and cardiac injury through activating AMPK pathway, and provide a proof-of-concept for the treatment of LPS-induced cardiac dysfunction by targeting MEGF9.</p>\",\"PeriodicalId\":21096,\"journal\":{\"name\":\"Redox Report\",\"volume\":\"30 1\",\"pages\":\"2435252\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Report\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/13510002.2024.2435252\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Report","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/13510002.2024.2435252","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:炎症和氧化损伤在脓毒症心功能障碍的发病机制中起重要作用。多个egf样结构域9 (MEGF9)对细胞稳态至关重要;然而,其在败血症引起的心脏损伤和损害中的作用和机制尚不清楚。方法:利用腺病毒和腺相关病毒载体在体内和体外过表达或敲低MEGF9的表达。为了刺激脓毒性损伤,我们给心肌细胞和小鼠注射脂多糖(LPS)。为了阐明amp活化蛋白激酶(AMPK)的必要性,我们使用了全局敲除AMPK的小鼠。结果:我们发现在LPS刺激下,MEGF9在心肌细胞和小鼠中的表达降低。与阴性对照组相比,脓毒症患者血浆MEGF9水平也有所下降,且与lps诱导的心功能障碍呈负相关。此外,MEGF9过表达减弱,而MEGF9敲低加重了lps诱导的体内和体外炎症和氧化损伤,从而调节lps诱导的心脏损伤和损害。机制研究表明,MEGF9过表达通过激活AMPK通路减轻lps诱导的心功能障碍。结论:我们首次证明MEGF9通过激活AMPK通路,可预防脂多糖相关炎症、氧化损伤和心脏损伤,为靶向MEGF9治疗脂多糖诱导的心功能障碍提供了概念验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MEGF9 prevents lipopolysaccharide-induced cardiac dysfunction through activating AMPK pathway.

Objective: Inflammation and oxidative damage play critical roles in the pathogenesis of sepsis-induced cardiac dysfunction. Multiple EGF-like domains 9 (MEGF9) is essential for cell homeostasis; however, its role and mechanism in sepsis-induced cardiac injury and impairment remain unclear.

Methods: Adenoviral and adeno-associated viral vectors were applied to overexpress or knock down the expression of MEGF9 in vivo and in vitro. To stimulate septic injury, cardiomyocytes and mice were treated lipopolysaccharide (LPS). To clarify the necessity of AMP-activated protein kinase (AMPK), global AMPK knockout mice were used.

Results: We found that MEGF9 expressions were reduced in cardiomyocytes and mice by LPS stimulation. Compared with negative controls, plasma MEGF9 levels were also decreased in septic patients, and negatively correlated with LPS-induced cardiac dysfunction. In addition, MEGF9 overexpression attenuated, while MEGF9 knockdown aggravated LPS-induced inflammation and oxidative damage in vivo and in vitro, thereby regulating LPS-induced cardiac injury and impairment. Mechanistic studies revealed that MEGF9 overexpression alleviated LPS-induced cardiac dysfunction through activating AMPK pathway.

Conclusion: We for the first time demonstrate that MEGF9 prevents LPS-related inflammation, oxidative damage and cardiac injury through activating AMPK pathway, and provide a proof-of-concept for the treatment of LPS-induced cardiac dysfunction by targeting MEGF9.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Redox Report
Redox Report 生物-生化与分子生物学
CiteScore
6.10
自引率
0.00%
发文量
28
审稿时长
>12 weeks
期刊介绍: Redox Report is a multidisciplinary peer-reviewed open access journal focusing on the role of free radicals, oxidative stress, activated oxygen, perioxidative and redox processes, primarily in the human environment and human pathology. Relevant papers on the animal and plant environment, biology and pathology will also be included. While emphasis is placed upon methodological and intellectual advances underpinned by new data, the journal offers scope for review, hypotheses, critiques and other forms of discussion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信