Proceedings of the Edinburgh Mathematical Society最新文献

筛选
英文 中文
Solid bases and functorial constructions for (p-)Banach spaces of analytic functions 解析函数 (p-)Banach 空间的实体基和函数构造
IF 0.7 3区 数学
Proceedings of the Edinburgh Mathematical Society Pub Date : 2024-09-09 DOI: 10.1017/s001309152400035x
Guozheng Cheng, Xiang Fang, Chao Liu, Yufeng Lu
{"title":"Solid bases and functorial constructions for (p-)Banach spaces of analytic functions","authors":"Guozheng Cheng, Xiang Fang, Chao Liu, Yufeng Lu","doi":"10.1017/s001309152400035x","DOIUrl":"https://doi.org/10.1017/s001309152400035x","url":null,"abstract":"Motivated by new examples of functional Banach spaces over the unit disk, arising as the symbol spaces in the study of random analytic functions, for which the monomials <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S001309152400035X_inline1.png\"/> <jats:tex-math>${z^n}_{ngeq 0}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> exhibit features of an unconditional basis yet they often don’t even form a Schauder basis, we introduce a notion called <jats:italic>solid basis</jats:italic> for Banach spaces and <jats:italic>p</jats:italic>-Banach spaces and study its properties. Besides justifying the rich existence of solid bases, we study their relationship with unconditional bases, the weak-star convergence of Taylor polynomials, the problem of a solid span and the curious roles played by <jats:italic>c</jats:italic><jats:sub>0</jats:sub>. The two features of this work are as follows: (1) during the process, we are led to revisit the axioms satisfied by a typical Banach space of analytic functions over the unit disk, leading to a notion of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S001309152400035X_inline2.png\"/> <jats:tex-math>$mathcal{X}^mathrm{max}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S001309152400035X_inline3.png\"/> <jats:tex-math>$mathcal{X}^mathrm{min}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>), as well as a number of related functorial constructions, which are of independent interests; (2) the main interests of solid basis lie in the case of non-separable (<jats:italic>p</jats:italic>-)Banach spaces, such as BMOA and the Bloch space instead of VMOA and the little Bloch space.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"60 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142193186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Equisingularity in pencils of curves on germs of reduced complex surfaces 还原复曲面胚芽上曲线铅笔的等差数列
IF 0.7 3区 数学
Proceedings of the Edinburgh Mathematical Society Pub Date : 2024-06-04 DOI: 10.1017/s0013091524000245
Gonzalo Barranco Mendoza, Jawad Snoussi
{"title":"Equisingularity in pencils of curves on germs of reduced complex surfaces","authors":"Gonzalo Barranco Mendoza, Jawad Snoussi","doi":"10.1017/s0013091524000245","DOIUrl":"https://doi.org/10.1017/s0013091524000245","url":null,"abstract":"<p>We study pencils of curves on a germ of complex reduced surface <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603133454187-0844:S0013091524000245:S0013091524000245_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$(S,0)$</span></span></img></span></span>. These are families of curves parametrized by <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603133454187-0844:S0013091524000245:S0013091524000245_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$ mathbb{P}^1 $</span></span></img></span></span> having 0 as the unique common point. We prove that for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603133454187-0844:S0013091524000245:S0013091524000245_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$win mathbb{P}^1$</span></span></img></span></span>, the corresponding curve of the pencil does not have the generic topology if and only if either the corresponding curve of the pulled-back pencil to the normalized surface has a non generic topology or <span>w</span> is a limit value for the function <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603133454187-0844:S0013091524000245:S0013091524000245_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$ f/g $</span></span></img></span></span> along the singular locus of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603133454187-0844:S0013091524000245:S0013091524000245_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$(S,0)$</span></span></img></span></span>, where <span>f</span> and <span>g</span> are generators of the pencil.</p>","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"26 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141258929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A classification of automorphic Lie algebras on complex tori 复杂环上的非定常李代数分类
IF 0.7 3区 数学
Proceedings of the Edinburgh Mathematical Society Pub Date : 2024-05-28 DOI: 10.1017/s0013091524000324
Vincent Knibbeler, Sara Lombardo, Casper Oelen
{"title":"A classification of automorphic Lie algebras on complex tori","authors":"Vincent Knibbeler, Sara Lombardo, Casper Oelen","doi":"10.1017/s0013091524000324","DOIUrl":"https://doi.org/10.1017/s0013091524000324","url":null,"abstract":"We classify the automorphic Lie algebras of equivariant maps from a complex torus to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000324_inline1.png\"/> <jats:tex-math>$mathfrak{sl}_2(mathbb{C})$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. For each case, we compute a basis in a normal form. The automorphic Lie algebras correspond precisely to two disjoint families of Lie algebras parametrised by the modular curve of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000324_inline2.png\"/> <jats:tex-math>$mathrm{PSL}_2({mathbb{Z}})$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, apart from four cases, which are all isomorphic to Onsager’s algebra.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"28 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141165924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coactions and skew products for topological quivers 拓扑四元组的共生和倾斜积
IF 0.7 3区 数学
Proceedings of the Edinburgh Mathematical Society Pub Date : 2024-05-22 DOI: 10.1017/s0013091524000208
Lucas Hall
{"title":"Coactions and skew products for topological quivers","authors":"Lucas Hall","doi":"10.1017/s0013091524000208","DOIUrl":"https://doi.org/10.1017/s0013091524000208","url":null,"abstract":"Given a cocycle on a topological quiver by a locally compact group, the author constructs a skew product topological quiver and determines conditions under which a topological quiver can be identified as a skew product. We investigate the relationship between the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000208_inline1.png\"/> <jats:tex-math>${C^*}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-algebra of the skew product and a certain native coaction on the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000208_inline2.png\"/> <jats:tex-math>${C^*}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-algebra of the original quiver, finding that the crossed product by the coaction is isomorphic to the skew product. As an application, we show that the reduced crossed product by the dual action is Morita equivalent to the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000208_inline3.png\"/> <jats:tex-math>${C^*}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-algebra of the original quiver.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"45 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141153874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of continuous homomorphisms on entire slice monogenic functions 整片单原函数上连续同态的特征
IF 0.7 3区 数学
Proceedings of the Edinburgh Mathematical Society Pub Date : 2024-05-17 DOI: 10.1017/s0013091524000373
Stefano Pinton, Peter Schlosser
{"title":"Characterization of continuous homomorphisms on entire slice monogenic functions","authors":"Stefano Pinton, Peter Schlosser","doi":"10.1017/s0013091524000373","DOIUrl":"https://doi.org/10.1017/s0013091524000373","url":null,"abstract":"This paper is inspired by a class of infinite order differential operators arising in quantum mechanics. They turned out to be an important tool in the investigation of evolution of superoscillations with respect to quantum fields equations. Infinite order differential operators act naturally on spaces of holomorphic functions or on hyperfunctions. Recently, infinite order differential operators have been considered and characterized on the spaces of entire monogenic functions, i.e. functions that are in the kernel of the Dirac operators. The focus of this paper is the characterization of infinite order differential operators that act continuously on a different class of hyperholomorphic functions, called slice hyperholomorphic functions with values in a Clifford algebra or also slice monogenic functions. This function theory has a very reach associated spectral theory and both the function theory and the operator theory in this setting are subjected to intensive investigations. Here we introduce the concept of proximate order and establish some fundamental properties of entire slice monogenic functions that are crucial for the characterization of infinite order differential operators acting on entire slice monogenic functions.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"29 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141062253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the smoothness of slowly varying functions 论缓慢变化函数的平稳性
IF 0.7 3区 数学
Proceedings of the Edinburgh Mathematical Society Pub Date : 2024-05-16 DOI: 10.1017/s0013091524000348
Dalimil Peša
{"title":"On the smoothness of slowly varying functions","authors":"Dalimil Peša","doi":"10.1017/s0013091524000348","DOIUrl":"https://doi.org/10.1017/s0013091524000348","url":null,"abstract":"In this paper, we consider the question of smoothness of slowly varying functions satisfying the modern definition that, in the last two decades, gained prevalence in the applications concerning function spaces and interpolation. We show that every slowly varying function of this type is equivalent to a slowly varying function that has continuous classical derivatives of all orders.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"67 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141062304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the convexity of the quaternionic essential numerical range 论四元基本数值范围的凸性
IF 0.7 3区 数学
Proceedings of the Edinburgh Mathematical Society Pub Date : 2024-05-15 DOI: 10.1017/s0013091524000336
LuÍs Carvalho, Cristina Diogo, Sérgio Mendes, Helena Soares
{"title":"On the convexity of the quaternionic essential numerical range","authors":"LuÍs Carvalho, Cristina Diogo, Sérgio Mendes, Helena Soares","doi":"10.1017/s0013091524000336","DOIUrl":"https://doi.org/10.1017/s0013091524000336","url":null,"abstract":"The numerical range in the quaternionic setting is, in general, a non-convex subset of the quaternions. The essential numerical range is a refinement of the numerical range that only keeps the elements that have, in a certain sense, infinite multiplicity. We prove that the essential numerical range of a bounded linear operator on a quaternionic Hilbert space is convex. A quaternionic analogue of Lancaster theorem, relating the closure of the numerical range and its essential numerical range, is also provided.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"4 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141064095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Powers of commutators in linear algebraic groups 线性代数群中换元的幂
IF 0.7 3区 数学
Proceedings of the Edinburgh Mathematical Society Pub Date : 2024-05-14 DOI: 10.1017/s0013091524000361
Benjamin Martin
{"title":"Powers of commutators in linear algebraic groups","authors":"Benjamin Martin","doi":"10.1017/s0013091524000361","DOIUrl":"https://doi.org/10.1017/s0013091524000361","url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514121451157-0521:S0013091524000361:S0013091524000361_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${mathcal G}$</span></span></img></span></span> be a linear algebraic group over <span>k</span>, where <span>k</span> is an algebraically closed field, a pseudo-finite field or the valuation ring of a non-archimedean local field. Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514121451157-0521:S0013091524000361:S0013091524000361_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$G= {mathcal G}(k)$</span></span></img></span></span>. We prove that if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514121451157-0521:S0013091524000361:S0013091524000361_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$gammain G$</span></span></img></span></span> such that <span>γ</span> is a commutator and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514121451157-0521:S0013091524000361:S0013091524000361_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$deltain G$</span></span></img></span></span> such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514121451157-0521:S0013091524000361:S0013091524000361_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$langle deltarangle= langle gammarangle$</span></span></img></span></span> then <span>δ</span> is a commutator. This generalises a result of Honda for finite groups. Our proof uses the Lefschetz principle from first-order model theory.</p>","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"8 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140938305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Growth of hypercyclic functions: a continuous path between -frequent hypercyclicity and hypercyclicity 超循环函数的增长:频繁超循环与超循环之间的连续路径
IF 0.7 3区 数学
Proceedings of the Edinburgh Mathematical Society Pub Date : 2024-05-08 DOI: 10.1017/s0013091524000312
Augustin Mouze, Vincent Munnier
{"title":"Growth of hypercyclic functions: a continuous path between -frequent hypercyclicity and hypercyclicity","authors":"Augustin Mouze, Vincent Munnier","doi":"10.1017/s0013091524000312","DOIUrl":"https://doi.org/10.1017/s0013091524000312","url":null,"abstract":"We are interested in the optimal growth in terms of <jats:italic>L<jats:sup>p</jats:sup></jats:italic>-averages of hypercyclic and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000312_inline2.png\"/> <jats:tex-math>$mathcal{U}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-frequently hypercyclic functions for some weighted Taylor shift operators acting on the space of analytic functions on the unit disc. We unify the results obtained by considering intermediate notions of upper frequent hypercyclicity between <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000312_inline3.png\"/> <jats:tex-math>$mathcal{U}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-frequent hypercyclicity and hypercyclicity.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"114 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140938304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some congruences for 12-coloured generalized Frobenius partitions 12 色广义弗罗贝尼斯分区的一些全等式
IF 0.7 3区 数学
Proceedings of the Edinburgh Mathematical Society Pub Date : 2024-05-02 DOI: 10.1017/s0013091524000294
Su-Ping Cui, Nancy S. S. Gu, Dazhao Tang
{"title":"Some congruences for 12-coloured generalized Frobenius partitions","authors":"Su-Ping Cui, Nancy S. S. Gu, Dazhao Tang","doi":"10.1017/s0013091524000294","DOIUrl":"https://doi.org/10.1017/s0013091524000294","url":null,"abstract":"In his 1984 AMS Memoir, Andrews introduced the family of functions <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000294_inline1.png\"/> <jats:tex-math>$cphi_k(n)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the number of <jats:italic>k</jats:italic>-coloured generalized Frobenius partitions of <jats:italic>n</jats:italic>. In 2019, Chan, Wang and Yang systematically studied the arithmetic properties of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000294_inline2.png\"/> <jats:tex-math>$textrm{C}Phi_k(q)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000294_inline3.png\"/> <jats:tex-math>$2leq kleq17$</jats:tex-math> </jats:alternatives> </jats:inline-formula> by utilizing the theory of modular forms, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000294_inline4.png\"/> <jats:tex-math>$textrm{C}Phi_k(q)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> denotes the generating function of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000294_inline5.png\"/> <jats:tex-math>$cphi_k(n)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this paper, we first establish another expression of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000294_inline6.png\"/> <jats:tex-math>$textrm{C}Phi_{12}(q)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> with integer coefficients, then prove some congruences modulo small powers of 3 for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000294_inline7.png\"/> <jats:tex-math>$cphi_{12}(n)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> by using some parameterized identities of theta functions due to A. Alaca, S. Alaca and Williams. Finally, we conjecture three families of congruences modulo powers of 3 satisfied by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000294_inline8.png\"/> <jats:tex-math>$cphi_{12}(n)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"11 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140836424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信