复杂环上的非定常李代数分类

IF 0.7 3区 数学 Q2 MATHEMATICS
Vincent Knibbeler, Sara Lombardo, Casper Oelen
{"title":"复杂环上的非定常李代数分类","authors":"Vincent Knibbeler, Sara Lombardo, Casper Oelen","doi":"10.1017/s0013091524000324","DOIUrl":null,"url":null,"abstract":"We classify the automorphic Lie algebras of equivariant maps from a complex torus to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000324_inline1.png\"/> <jats:tex-math>$\\mathfrak{sl}_2(\\mathbb{C})$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. For each case, we compute a basis in a normal form. The automorphic Lie algebras correspond precisely to two disjoint families of Lie algebras parametrised by the modular curve of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000324_inline2.png\"/> <jats:tex-math>$\\mathrm{PSL}_2({\\mathbb{Z}})$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, apart from four cases, which are all isomorphic to Onsager’s algebra.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"28 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A classification of automorphic Lie algebras on complex tori\",\"authors\":\"Vincent Knibbeler, Sara Lombardo, Casper Oelen\",\"doi\":\"10.1017/s0013091524000324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We classify the automorphic Lie algebras of equivariant maps from a complex torus to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000324_inline1.png\\\"/> <jats:tex-math>$\\\\mathfrak{sl}_2(\\\\mathbb{C})$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. For each case, we compute a basis in a normal form. The automorphic Lie algebras correspond precisely to two disjoint families of Lie algebras parametrised by the modular curve of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000324_inline2.png\\\"/> <jats:tex-math>$\\\\mathrm{PSL}_2({\\\\mathbb{Z}})$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, apart from four cases, which are all isomorphic to Onsager’s algebra.\",\"PeriodicalId\":20586,\"journal\":{\"name\":\"Proceedings of the Edinburgh Mathematical Society\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Edinburgh Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0013091524000324\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Edinburgh Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091524000324","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们对从复环面到 $\mathfrak{sl}_2(\mathbb{C})$ 的等变映射的自形李代数进行了分类。对于每种情况,我们都计算出一个正则表达式的基。除了与昂萨格代数同构的四种情况之外,这些自变分李代数精确地对应于以 $\mathrm{PSL}_2({\mathbb{Z}}) $ 的模态曲线为参数的两个不相邻的李代数族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A classification of automorphic Lie algebras on complex tori
We classify the automorphic Lie algebras of equivariant maps from a complex torus to $\mathfrak{sl}_2(\mathbb{C})$ . For each case, we compute a basis in a normal form. The automorphic Lie algebras correspond precisely to two disjoint families of Lie algebras parametrised by the modular curve of $\mathrm{PSL}_2({\mathbb{Z}})$ , apart from four cases, which are all isomorphic to Onsager’s algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
49
审稿时长
6 months
期刊介绍: The Edinburgh Mathematical Society was founded in 1883 and over the years, has evolved into the principal society for the promotion of mathematics research in Scotland. The Society has published its Proceedings since 1884. This journal contains research papers on topics in a broad range of pure and applied mathematics, together with a number of topical book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信