还原复曲面胚芽上曲线铅笔的等差数列

IF 0.7 3区 数学 Q2 MATHEMATICS
Gonzalo Barranco Mendoza, Jawad Snoussi
{"title":"还原复曲面胚芽上曲线铅笔的等差数列","authors":"Gonzalo Barranco Mendoza, Jawad Snoussi","doi":"10.1017/s0013091524000245","DOIUrl":null,"url":null,"abstract":"<p>We study pencils of curves on a germ of complex reduced surface <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603133454187-0844:S0013091524000245:S0013091524000245_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$(S,0)$</span></span></img></span></span>. These are families of curves parametrized by <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603133454187-0844:S0013091524000245:S0013091524000245_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$ \\mathbb{P}^1 $</span></span></img></span></span> having 0 as the unique common point. We prove that for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603133454187-0844:S0013091524000245:S0013091524000245_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$w\\in \\mathbb{P}^1$</span></span></img></span></span>, the corresponding curve of the pencil does not have the generic topology if and only if either the corresponding curve of the pulled-back pencil to the normalized surface has a non generic topology or <span>w</span> is a limit value for the function <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603133454187-0844:S0013091524000245:S0013091524000245_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$ f/g $</span></span></img></span></span> along the singular locus of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603133454187-0844:S0013091524000245:S0013091524000245_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$(S,0)$</span></span></img></span></span>, where <span>f</span> and <span>g</span> are generators of the pencil.</p>","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"26 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equisingularity in pencils of curves on germs of reduced complex surfaces\",\"authors\":\"Gonzalo Barranco Mendoza, Jawad Snoussi\",\"doi\":\"10.1017/s0013091524000245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study pencils of curves on a germ of complex reduced surface <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603133454187-0844:S0013091524000245:S0013091524000245_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$(S,0)$</span></span></img></span></span>. These are families of curves parametrized by <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603133454187-0844:S0013091524000245:S0013091524000245_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$ \\\\mathbb{P}^1 $</span></span></img></span></span> having 0 as the unique common point. We prove that for <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603133454187-0844:S0013091524000245:S0013091524000245_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$w\\\\in \\\\mathbb{P}^1$</span></span></img></span></span>, the corresponding curve of the pencil does not have the generic topology if and only if either the corresponding curve of the pulled-back pencil to the normalized surface has a non generic topology or <span>w</span> is a limit value for the function <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603133454187-0844:S0013091524000245:S0013091524000245_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$ f/g $</span></span></img></span></span> along the singular locus of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603133454187-0844:S0013091524000245:S0013091524000245_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$(S,0)$</span></span></img></span></span>, where <span>f</span> and <span>g</span> are generators of the pencil.</p>\",\"PeriodicalId\":20586,\"journal\":{\"name\":\"Proceedings of the Edinburgh Mathematical Society\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Edinburgh Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0013091524000245\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Edinburgh Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091524000245","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究复还原曲面$(S,0)$胚芽上的曲线铅笔。这些曲线是以\mathbb{P}^1 $ 为参数、以 0 为唯一公共点的曲线族。我们证明,对于 $w\in \mathbb{P}^1$,铅笔的相应曲线不具有泛函拓扑,当且仅当拉回铅笔到归一化曲面的相应曲线具有非泛函拓扑,或者 w 是函数 $ f/g $ 沿 $(S,0)$ 的奇点位置的极限值(其中 f 和 g 是铅笔的生成器)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equisingularity in pencils of curves on germs of reduced complex surfaces

We study pencils of curves on a germ of complex reduced surface $(S,0)$. These are families of curves parametrized by $ \mathbb{P}^1 $ having 0 as the unique common point. We prove that for $w\in \mathbb{P}^1$, the corresponding curve of the pencil does not have the generic topology if and only if either the corresponding curve of the pulled-back pencil to the normalized surface has a non generic topology or w is a limit value for the function $ f/g $ along the singular locus of $(S,0)$, where f and g are generators of the pencil.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
49
审稿时长
6 months
期刊介绍: The Edinburgh Mathematical Society was founded in 1883 and over the years, has evolved into the principal society for the promotion of mathematics research in Scotland. The Society has published its Proceedings since 1884. This journal contains research papers on topics in a broad range of pure and applied mathematics, together with a number of topical book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信