{"title":"还原复曲面胚芽上曲线铅笔的等差数列","authors":"Gonzalo Barranco Mendoza, Jawad Snoussi","doi":"10.1017/s0013091524000245","DOIUrl":null,"url":null,"abstract":"<p>We study pencils of curves on a germ of complex reduced surface <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603133454187-0844:S0013091524000245:S0013091524000245_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$(S,0)$</span></span></img></span></span>. These are families of curves parametrized by <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603133454187-0844:S0013091524000245:S0013091524000245_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$ \\mathbb{P}^1 $</span></span></img></span></span> having 0 as the unique common point. We prove that for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603133454187-0844:S0013091524000245:S0013091524000245_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$w\\in \\mathbb{P}^1$</span></span></img></span></span>, the corresponding curve of the pencil does not have the generic topology if and only if either the corresponding curve of the pulled-back pencil to the normalized surface has a non generic topology or <span>w</span> is a limit value for the function <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603133454187-0844:S0013091524000245:S0013091524000245_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$ f/g $</span></span></img></span></span> along the singular locus of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603133454187-0844:S0013091524000245:S0013091524000245_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$(S,0)$</span></span></img></span></span>, where <span>f</span> and <span>g</span> are generators of the pencil.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equisingularity in pencils of curves on germs of reduced complex surfaces\",\"authors\":\"Gonzalo Barranco Mendoza, Jawad Snoussi\",\"doi\":\"10.1017/s0013091524000245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study pencils of curves on a germ of complex reduced surface <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603133454187-0844:S0013091524000245:S0013091524000245_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$(S,0)$</span></span></img></span></span>. These are families of curves parametrized by <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603133454187-0844:S0013091524000245:S0013091524000245_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$ \\\\mathbb{P}^1 $</span></span></img></span></span> having 0 as the unique common point. We prove that for <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603133454187-0844:S0013091524000245:S0013091524000245_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$w\\\\in \\\\mathbb{P}^1$</span></span></img></span></span>, the corresponding curve of the pencil does not have the generic topology if and only if either the corresponding curve of the pulled-back pencil to the normalized surface has a non generic topology or <span>w</span> is a limit value for the function <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603133454187-0844:S0013091524000245:S0013091524000245_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$ f/g $</span></span></img></span></span> along the singular locus of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603133454187-0844:S0013091524000245:S0013091524000245_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$(S,0)$</span></span></img></span></span>, where <span>f</span> and <span>g</span> are generators of the pencil.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0013091524000245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091524000245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们研究复还原曲面$(S,0)$胚芽上的曲线铅笔。这些曲线是以\mathbb{P}^1 $ 为参数、以 0 为唯一公共点的曲线族。我们证明,对于 $w\in \mathbb{P}^1$,铅笔的相应曲线不具有泛函拓扑,当且仅当拉回铅笔到归一化曲面的相应曲线具有非泛函拓扑,或者 w 是函数 $ f/g $ 沿 $(S,0)$ 的奇点位置的极限值(其中 f 和 g 是铅笔的生成器)。
Equisingularity in pencils of curves on germs of reduced complex surfaces
We study pencils of curves on a germ of complex reduced surface $(S,0)$. These are families of curves parametrized by $ \mathbb{P}^1 $ having 0 as the unique common point. We prove that for $w\in \mathbb{P}^1$, the corresponding curve of the pencil does not have the generic topology if and only if either the corresponding curve of the pulled-back pencil to the normalized surface has a non generic topology or w is a limit value for the function $ f/g $ along the singular locus of $(S,0)$, where f and g are generators of the pencil.