{"title":"12 色广义弗罗贝尼斯分区的一些全等式","authors":"Su-Ping Cui, Nancy S. S. Gu, Dazhao Tang","doi":"10.1017/s0013091524000294","DOIUrl":null,"url":null,"abstract":"In his 1984 AMS Memoir, Andrews introduced the family of functions <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000294_inline1.png\"/> <jats:tex-math>$c\\phi_k(n)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the number of <jats:italic>k</jats:italic>-coloured generalized Frobenius partitions of <jats:italic>n</jats:italic>. In 2019, Chan, Wang and Yang systematically studied the arithmetic properties of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000294_inline2.png\"/> <jats:tex-math>$\\textrm{C}\\Phi_k(q)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000294_inline3.png\"/> <jats:tex-math>$2\\leq k\\leq17$</jats:tex-math> </jats:alternatives> </jats:inline-formula> by utilizing the theory of modular forms, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000294_inline4.png\"/> <jats:tex-math>$\\textrm{C}\\Phi_k(q)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> denotes the generating function of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000294_inline5.png\"/> <jats:tex-math>$c\\phi_k(n)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this paper, we first establish another expression of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000294_inline6.png\"/> <jats:tex-math>$\\textrm{C}\\Phi_{12}(q)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> with integer coefficients, then prove some congruences modulo small powers of 3 for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000294_inline7.png\"/> <jats:tex-math>$c\\phi_{12}(n)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> by using some parameterized identities of theta functions due to A. Alaca, S. Alaca and Williams. Finally, we conjecture three families of congruences modulo powers of 3 satisfied by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000294_inline8.png\"/> <jats:tex-math>$c\\phi_{12}(n)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"11 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some congruences for 12-coloured generalized Frobenius partitions\",\"authors\":\"Su-Ping Cui, Nancy S. S. Gu, Dazhao Tang\",\"doi\":\"10.1017/s0013091524000294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In his 1984 AMS Memoir, Andrews introduced the family of functions <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000294_inline1.png\\\"/> <jats:tex-math>$c\\\\phi_k(n)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the number of <jats:italic>k</jats:italic>-coloured generalized Frobenius partitions of <jats:italic>n</jats:italic>. In 2019, Chan, Wang and Yang systematically studied the arithmetic properties of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000294_inline2.png\\\"/> <jats:tex-math>$\\\\textrm{C}\\\\Phi_k(q)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000294_inline3.png\\\"/> <jats:tex-math>$2\\\\leq k\\\\leq17$</jats:tex-math> </jats:alternatives> </jats:inline-formula> by utilizing the theory of modular forms, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000294_inline4.png\\\"/> <jats:tex-math>$\\\\textrm{C}\\\\Phi_k(q)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> denotes the generating function of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000294_inline5.png\\\"/> <jats:tex-math>$c\\\\phi_k(n)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this paper, we first establish another expression of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000294_inline6.png\\\"/> <jats:tex-math>$\\\\textrm{C}\\\\Phi_{12}(q)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> with integer coefficients, then prove some congruences modulo small powers of 3 for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000294_inline7.png\\\"/> <jats:tex-math>$c\\\\phi_{12}(n)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> by using some parameterized identities of theta functions due to A. Alaca, S. Alaca and Williams. Finally, we conjecture three families of congruences modulo powers of 3 satisfied by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000294_inline8.png\\\"/> <jats:tex-math>$c\\\\phi_{12}(n)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":20586,\"journal\":{\"name\":\"Proceedings of the Edinburgh Mathematical Society\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Edinburgh Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0013091524000294\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Edinburgh Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091524000294","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Some congruences for 12-coloured generalized Frobenius partitions
In his 1984 AMS Memoir, Andrews introduced the family of functions $c\phi_k(n)$, the number of k-coloured generalized Frobenius partitions of n. In 2019, Chan, Wang and Yang systematically studied the arithmetic properties of $\textrm{C}\Phi_k(q)$ for $2\leq k\leq17$ by utilizing the theory of modular forms, where $\textrm{C}\Phi_k(q)$ denotes the generating function of $c\phi_k(n)$. In this paper, we first establish another expression of $\textrm{C}\Phi_{12}(q)$ with integer coefficients, then prove some congruences modulo small powers of 3 for $c\phi_{12}(n)$ by using some parameterized identities of theta functions due to A. Alaca, S. Alaca and Williams. Finally, we conjecture three families of congruences modulo powers of 3 satisfied by $c\phi_{12}(n)$.
期刊介绍:
The Edinburgh Mathematical Society was founded in 1883 and over the years, has evolved into the principal society for the promotion of mathematics research in Scotland. The Society has published its Proceedings since 1884. This journal contains research papers on topics in a broad range of pure and applied mathematics, together with a number of topical book reviews.