12 色广义弗罗贝尼斯分区的一些全等式

IF 0.7 3区 数学 Q2 MATHEMATICS
Su-Ping Cui, Nancy S. S. Gu, Dazhao Tang
{"title":"12 色广义弗罗贝尼斯分区的一些全等式","authors":"Su-Ping Cui, Nancy S. S. Gu, Dazhao Tang","doi":"10.1017/s0013091524000294","DOIUrl":null,"url":null,"abstract":"In his 1984 AMS Memoir, Andrews introduced the family of functions <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000294_inline1.png\"/> <jats:tex-math>$c\\phi_k(n)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the number of <jats:italic>k</jats:italic>-coloured generalized Frobenius partitions of <jats:italic>n</jats:italic>. In 2019, Chan, Wang and Yang systematically studied the arithmetic properties of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000294_inline2.png\"/> <jats:tex-math>$\\textrm{C}\\Phi_k(q)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000294_inline3.png\"/> <jats:tex-math>$2\\leq k\\leq17$</jats:tex-math> </jats:alternatives> </jats:inline-formula> by utilizing the theory of modular forms, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000294_inline4.png\"/> <jats:tex-math>$\\textrm{C}\\Phi_k(q)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> denotes the generating function of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000294_inline5.png\"/> <jats:tex-math>$c\\phi_k(n)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this paper, we first establish another expression of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000294_inline6.png\"/> <jats:tex-math>$\\textrm{C}\\Phi_{12}(q)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> with integer coefficients, then prove some congruences modulo small powers of 3 for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000294_inline7.png\"/> <jats:tex-math>$c\\phi_{12}(n)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> by using some parameterized identities of theta functions due to A. Alaca, S. Alaca and Williams. Finally, we conjecture three families of congruences modulo powers of 3 satisfied by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000294_inline8.png\"/> <jats:tex-math>$c\\phi_{12}(n)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"11 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some congruences for 12-coloured generalized Frobenius partitions\",\"authors\":\"Su-Ping Cui, Nancy S. S. Gu, Dazhao Tang\",\"doi\":\"10.1017/s0013091524000294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In his 1984 AMS Memoir, Andrews introduced the family of functions <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000294_inline1.png\\\"/> <jats:tex-math>$c\\\\phi_k(n)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the number of <jats:italic>k</jats:italic>-coloured generalized Frobenius partitions of <jats:italic>n</jats:italic>. In 2019, Chan, Wang and Yang systematically studied the arithmetic properties of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000294_inline2.png\\\"/> <jats:tex-math>$\\\\textrm{C}\\\\Phi_k(q)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000294_inline3.png\\\"/> <jats:tex-math>$2\\\\leq k\\\\leq17$</jats:tex-math> </jats:alternatives> </jats:inline-formula> by utilizing the theory of modular forms, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000294_inline4.png\\\"/> <jats:tex-math>$\\\\textrm{C}\\\\Phi_k(q)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> denotes the generating function of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000294_inline5.png\\\"/> <jats:tex-math>$c\\\\phi_k(n)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this paper, we first establish another expression of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000294_inline6.png\\\"/> <jats:tex-math>$\\\\textrm{C}\\\\Phi_{12}(q)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> with integer coefficients, then prove some congruences modulo small powers of 3 for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000294_inline7.png\\\"/> <jats:tex-math>$c\\\\phi_{12}(n)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> by using some parameterized identities of theta functions due to A. Alaca, S. Alaca and Williams. Finally, we conjecture three families of congruences modulo powers of 3 satisfied by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000294_inline8.png\\\"/> <jats:tex-math>$c\\\\phi_{12}(n)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":20586,\"journal\":{\"name\":\"Proceedings of the Edinburgh Mathematical Society\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Edinburgh Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0013091524000294\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Edinburgh Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091524000294","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

安德鲁斯在1984年的AMS回忆录中介绍了函数$c\phi_k(n)$族,即n的k色广义弗罗贝纽斯分区数。2019年,Chan、Wang和Yang利用模形式理论系统地研究了$\textrm{C}\Phi_k(q)$对于$2\leq k\leq17$的算术性质,其中$\textrm{C}\Phi_k(q)$表示$c\phi_k(n)$的生成函数。本文首先建立了$\textrm{C}\Phi_{12}(q)$ 的另一个整数系数表达式,然后利用阿拉卡(A. Alaca)、阿拉卡(S. Alaca)和威廉姆斯(Williams)的θ函数的一些参数化同调,证明了$c\phi_{12}(n)$ 的一些小幂次同调。最后,我们猜想$c\phi_{12}(n)$ 满足三个 3 的幂的全等族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some congruences for 12-coloured generalized Frobenius partitions
In his 1984 AMS Memoir, Andrews introduced the family of functions $c\phi_k(n)$ , the number of k-coloured generalized Frobenius partitions of n. In 2019, Chan, Wang and Yang systematically studied the arithmetic properties of $\textrm{C}\Phi_k(q)$ for $2\leq k\leq17$ by utilizing the theory of modular forms, where $\textrm{C}\Phi_k(q)$ denotes the generating function of $c\phi_k(n)$ . In this paper, we first establish another expression of $\textrm{C}\Phi_{12}(q)$ with integer coefficients, then prove some congruences modulo small powers of 3 for $c\phi_{12}(n)$ by using some parameterized identities of theta functions due to A. Alaca, S. Alaca and Williams. Finally, we conjecture three families of congruences modulo powers of 3 satisfied by $c\phi_{12}(n)$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
49
审稿时长
6 months
期刊介绍: The Edinburgh Mathematical Society was founded in 1883 and over the years, has evolved into the principal society for the promotion of mathematics research in Scotland. The Society has published its Proceedings since 1884. This journal contains research papers on topics in a broad range of pure and applied mathematics, together with a number of topical book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信