12 色广义弗罗贝尼斯分区的一些全等式

Pub Date : 2024-05-02 DOI:10.1017/s0013091524000294
Su-Ping Cui, Nancy S. S. Gu, Dazhao Tang
{"title":"12 色广义弗罗贝尼斯分区的一些全等式","authors":"Su-Ping Cui, Nancy S. S. Gu, Dazhao Tang","doi":"10.1017/s0013091524000294","DOIUrl":null,"url":null,"abstract":"In his 1984 AMS Memoir, Andrews introduced the family of functions <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000294_inline1.png\"/> <jats:tex-math>$c\\phi_k(n)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the number of <jats:italic>k</jats:italic>-coloured generalized Frobenius partitions of <jats:italic>n</jats:italic>. In 2019, Chan, Wang and Yang systematically studied the arithmetic properties of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000294_inline2.png\"/> <jats:tex-math>$\\textrm{C}\\Phi_k(q)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000294_inline3.png\"/> <jats:tex-math>$2\\leq k\\leq17$</jats:tex-math> </jats:alternatives> </jats:inline-formula> by utilizing the theory of modular forms, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000294_inline4.png\"/> <jats:tex-math>$\\textrm{C}\\Phi_k(q)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> denotes the generating function of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000294_inline5.png\"/> <jats:tex-math>$c\\phi_k(n)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this paper, we first establish another expression of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000294_inline6.png\"/> <jats:tex-math>$\\textrm{C}\\Phi_{12}(q)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> with integer coefficients, then prove some congruences modulo small powers of 3 for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000294_inline7.png\"/> <jats:tex-math>$c\\phi_{12}(n)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> by using some parameterized identities of theta functions due to A. Alaca, S. Alaca and Williams. Finally, we conjecture three families of congruences modulo powers of 3 satisfied by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000294_inline8.png\"/> <jats:tex-math>$c\\phi_{12}(n)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some congruences for 12-coloured generalized Frobenius partitions\",\"authors\":\"Su-Ping Cui, Nancy S. S. Gu, Dazhao Tang\",\"doi\":\"10.1017/s0013091524000294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In his 1984 AMS Memoir, Andrews introduced the family of functions <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000294_inline1.png\\\"/> <jats:tex-math>$c\\\\phi_k(n)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the number of <jats:italic>k</jats:italic>-coloured generalized Frobenius partitions of <jats:italic>n</jats:italic>. In 2019, Chan, Wang and Yang systematically studied the arithmetic properties of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000294_inline2.png\\\"/> <jats:tex-math>$\\\\textrm{C}\\\\Phi_k(q)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000294_inline3.png\\\"/> <jats:tex-math>$2\\\\leq k\\\\leq17$</jats:tex-math> </jats:alternatives> </jats:inline-formula> by utilizing the theory of modular forms, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000294_inline4.png\\\"/> <jats:tex-math>$\\\\textrm{C}\\\\Phi_k(q)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> denotes the generating function of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000294_inline5.png\\\"/> <jats:tex-math>$c\\\\phi_k(n)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this paper, we first establish another expression of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000294_inline6.png\\\"/> <jats:tex-math>$\\\\textrm{C}\\\\Phi_{12}(q)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> with integer coefficients, then prove some congruences modulo small powers of 3 for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000294_inline7.png\\\"/> <jats:tex-math>$c\\\\phi_{12}(n)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> by using some parameterized identities of theta functions due to A. Alaca, S. Alaca and Williams. Finally, we conjecture three families of congruences modulo powers of 3 satisfied by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000294_inline8.png\\\"/> <jats:tex-math>$c\\\\phi_{12}(n)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0013091524000294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091524000294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

安德鲁斯在1984年的AMS回忆录中介绍了函数$c\phi_k(n)$族,即n的k色广义弗罗贝纽斯分区数。2019年,Chan、Wang和Yang利用模形式理论系统地研究了$\textrm{C}\Phi_k(q)$对于$2\leq k\leq17$的算术性质,其中$\textrm{C}\Phi_k(q)$表示$c\phi_k(n)$的生成函数。本文首先建立了$\textrm{C}\Phi_{12}(q)$ 的另一个整数系数表达式,然后利用阿拉卡(A. Alaca)、阿拉卡(S. Alaca)和威廉姆斯(Williams)的θ函数的一些参数化同调,证明了$c\phi_{12}(n)$ 的一些小幂次同调。最后,我们猜想$c\phi_{12}(n)$ 满足三个 3 的幂的全等族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Some congruences for 12-coloured generalized Frobenius partitions
In his 1984 AMS Memoir, Andrews introduced the family of functions $c\phi_k(n)$ , the number of k-coloured generalized Frobenius partitions of n. In 2019, Chan, Wang and Yang systematically studied the arithmetic properties of $\textrm{C}\Phi_k(q)$ for $2\leq k\leq17$ by utilizing the theory of modular forms, where $\textrm{C}\Phi_k(q)$ denotes the generating function of $c\phi_k(n)$ . In this paper, we first establish another expression of $\textrm{C}\Phi_{12}(q)$ with integer coefficients, then prove some congruences modulo small powers of 3 for $c\phi_{12}(n)$ by using some parameterized identities of theta functions due to A. Alaca, S. Alaca and Williams. Finally, we conjecture three families of congruences modulo powers of 3 satisfied by $c\phi_{12}(n)$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信