A classification of automorphic Lie algebras on complex tori

Pub Date : 2024-05-28 DOI:10.1017/s0013091524000324
Vincent Knibbeler, Sara Lombardo, Casper Oelen
{"title":"A classification of automorphic Lie algebras on complex tori","authors":"Vincent Knibbeler, Sara Lombardo, Casper Oelen","doi":"10.1017/s0013091524000324","DOIUrl":null,"url":null,"abstract":"We classify the automorphic Lie algebras of equivariant maps from a complex torus to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000324_inline1.png\"/> <jats:tex-math>$\\mathfrak{sl}_2(\\mathbb{C})$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. For each case, we compute a basis in a normal form. The automorphic Lie algebras correspond precisely to two disjoint families of Lie algebras parametrised by the modular curve of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000324_inline2.png\"/> <jats:tex-math>$\\mathrm{PSL}_2({\\mathbb{Z}})$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, apart from four cases, which are all isomorphic to Onsager’s algebra.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091524000324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We classify the automorphic Lie algebras of equivariant maps from a complex torus to $\mathfrak{sl}_2(\mathbb{C})$ . For each case, we compute a basis in a normal form. The automorphic Lie algebras correspond precisely to two disjoint families of Lie algebras parametrised by the modular curve of $\mathrm{PSL}_2({\mathbb{Z}})$ , apart from four cases, which are all isomorphic to Onsager’s algebra.
分享
查看原文
复杂环上的非定常李代数分类
我们对从复环面到 $\mathfrak{sl}_2(\mathbb{C})$ 的等变映射的自形李代数进行了分类。对于每种情况,我们都计算出一个正则表达式的基。除了与昂萨格代数同构的四种情况之外,这些自变分李代数精确地对应于以 $\mathrm{PSL}_2({\mathbb{Z}}) $ 的模态曲线为参数的两个不相邻的李代数族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信