Solid bases and functorial constructions for (p-)Banach spaces of analytic functions

IF 0.7 3区 数学 Q2 MATHEMATICS
Guozheng Cheng, Xiang Fang, Chao Liu, Yufeng Lu
{"title":"Solid bases and functorial constructions for (p-)Banach spaces of analytic functions","authors":"Guozheng Cheng, Xiang Fang, Chao Liu, Yufeng Lu","doi":"10.1017/s001309152400035x","DOIUrl":null,"url":null,"abstract":"Motivated by new examples of functional Banach spaces over the unit disk, arising as the symbol spaces in the study of random analytic functions, for which the monomials <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S001309152400035X_inline1.png\"/> <jats:tex-math>$\\{z^n\\}_{n\\geq 0}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> exhibit features of an unconditional basis yet they often don’t even form a Schauder basis, we introduce a notion called <jats:italic>solid basis</jats:italic> for Banach spaces and <jats:italic>p</jats:italic>-Banach spaces and study its properties. Besides justifying the rich existence of solid bases, we study their relationship with unconditional bases, the weak-star convergence of Taylor polynomials, the problem of a solid span and the curious roles played by <jats:italic>c</jats:italic><jats:sub>0</jats:sub>. The two features of this work are as follows: (1) during the process, we are led to revisit the axioms satisfied by a typical Banach space of analytic functions over the unit disk, leading to a notion of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S001309152400035X_inline2.png\"/> <jats:tex-math>$\\mathcal{X}^\\mathrm{max}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S001309152400035X_inline3.png\"/> <jats:tex-math>$\\mathcal{X}^\\mathrm{min}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>), as well as a number of related functorial constructions, which are of independent interests; (2) the main interests of solid basis lie in the case of non-separable (<jats:italic>p</jats:italic>-)Banach spaces, such as BMOA and the Bloch space instead of VMOA and the little Bloch space.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"60 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Edinburgh Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s001309152400035x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by new examples of functional Banach spaces over the unit disk, arising as the symbol spaces in the study of random analytic functions, for which the monomials $\{z^n\}_{n\geq 0}$ exhibit features of an unconditional basis yet they often don’t even form a Schauder basis, we introduce a notion called solid basis for Banach spaces and p-Banach spaces and study its properties. Besides justifying the rich existence of solid bases, we study their relationship with unconditional bases, the weak-star convergence of Taylor polynomials, the problem of a solid span and the curious roles played by c0. The two features of this work are as follows: (1) during the process, we are led to revisit the axioms satisfied by a typical Banach space of analytic functions over the unit disk, leading to a notion of $\mathcal{X}^\mathrm{max}$ (and $\mathcal{X}^\mathrm{min}$ ), as well as a number of related functorial constructions, which are of independent interests; (2) the main interests of solid basis lie in the case of non-separable (p-)Banach spaces, such as BMOA and the Bloch space instead of VMOA and the little Bloch space.
解析函数 (p-)Banach 空间的实体基和函数构造
单位盘上的巴拿赫函数空间是随机解析函数研究中的符号空间,其单项式 $\{z^n}\_{n\geq 0}$ 表现出无条件基的特征,但它们通常甚至不构成一个肖德基,受这些新例子的启发,我们为巴拿赫空间和 p-Banach 空间引入了一个称为实基的概念,并研究了它的性质。除了证明固态基的丰富存在性之外,我们还研究了固态基与无条件基的关系、泰勒多项式的弱星收敛、固态跨度问题以及 c0 扮演的奇特角色。这项工作有以下两个特点:(1) 在这一过程中,我们重新审视了单位盘上解析函数的典型巴拿赫空间所满足的公理,从而得出了 $\mathcal{X}^\mathrm{max}$ (和 $\mathcal{X}^\mathrm{min}$ )的概念,以及一些相关的函数构造,这些都是我们感兴趣的;(2) 坚实基础的主要意义在于不可分离的(p-)巴拿赫空间,例如 BMOA 和布洛赫空间,而不是 VMOA 和小布洛赫空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
49
审稿时长
6 months
期刊介绍: The Edinburgh Mathematical Society was founded in 1883 and over the years, has evolved into the principal society for the promotion of mathematics research in Scotland. The Society has published its Proceedings since 1884. This journal contains research papers on topics in a broad range of pure and applied mathematics, together with a number of topical book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信