Solid bases and functorial constructions for (p-)Banach spaces of analytic functions

Pub Date : 2024-09-09 DOI:10.1017/s001309152400035x
Guozheng Cheng, Xiang Fang, Chao Liu, Yufeng Lu
{"title":"Solid bases and functorial constructions for (p-)Banach spaces of analytic functions","authors":"Guozheng Cheng, Xiang Fang, Chao Liu, Yufeng Lu","doi":"10.1017/s001309152400035x","DOIUrl":null,"url":null,"abstract":"Motivated by new examples of functional Banach spaces over the unit disk, arising as the symbol spaces in the study of random analytic functions, for which the monomials <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S001309152400035X_inline1.png\"/> <jats:tex-math>$\\{z^n\\}_{n\\geq 0}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> exhibit features of an unconditional basis yet they often don’t even form a Schauder basis, we introduce a notion called <jats:italic>solid basis</jats:italic> for Banach spaces and <jats:italic>p</jats:italic>-Banach spaces and study its properties. Besides justifying the rich existence of solid bases, we study their relationship with unconditional bases, the weak-star convergence of Taylor polynomials, the problem of a solid span and the curious roles played by <jats:italic>c</jats:italic><jats:sub>0</jats:sub>. The two features of this work are as follows: (1) during the process, we are led to revisit the axioms satisfied by a typical Banach space of analytic functions over the unit disk, leading to a notion of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S001309152400035X_inline2.png\"/> <jats:tex-math>$\\mathcal{X}^\\mathrm{max}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S001309152400035X_inline3.png\"/> <jats:tex-math>$\\mathcal{X}^\\mathrm{min}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>), as well as a number of related functorial constructions, which are of independent interests; (2) the main interests of solid basis lie in the case of non-separable (<jats:italic>p</jats:italic>-)Banach spaces, such as BMOA and the Bloch space instead of VMOA and the little Bloch space.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s001309152400035x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by new examples of functional Banach spaces over the unit disk, arising as the symbol spaces in the study of random analytic functions, for which the monomials $\{z^n\}_{n\geq 0}$ exhibit features of an unconditional basis yet they often don’t even form a Schauder basis, we introduce a notion called solid basis for Banach spaces and p-Banach spaces and study its properties. Besides justifying the rich existence of solid bases, we study their relationship with unconditional bases, the weak-star convergence of Taylor polynomials, the problem of a solid span and the curious roles played by c0. The two features of this work are as follows: (1) during the process, we are led to revisit the axioms satisfied by a typical Banach space of analytic functions over the unit disk, leading to a notion of $\mathcal{X}^\mathrm{max}$ (and $\mathcal{X}^\mathrm{min}$ ), as well as a number of related functorial constructions, which are of independent interests; (2) the main interests of solid basis lie in the case of non-separable (p-)Banach spaces, such as BMOA and the Bloch space instead of VMOA and the little Bloch space.
分享
查看原文
解析函数 (p-)Banach 空间的实体基和函数构造
单位盘上的巴拿赫函数空间是随机解析函数研究中的符号空间,其单项式 $\{z^n}\_{n\geq 0}$ 表现出无条件基的特征,但它们通常甚至不构成一个肖德基,受这些新例子的启发,我们为巴拿赫空间和 p-Banach 空间引入了一个称为实基的概念,并研究了它的性质。除了证明固态基的丰富存在性之外,我们还研究了固态基与无条件基的关系、泰勒多项式的弱星收敛、固态跨度问题以及 c0 扮演的奇特角色。这项工作有以下两个特点:(1) 在这一过程中,我们重新审视了单位盘上解析函数的典型巴拿赫空间所满足的公理,从而得出了 $\mathcal{X}^\mathrm{max}$ (和 $\mathcal{X}^\mathrm{min}$ )的概念,以及一些相关的函数构造,这些都是我们感兴趣的;(2) 坚实基础的主要意义在于不可分离的(p-)巴拿赫空间,例如 BMOA 和布洛赫空间,而不是 VMOA 和小布洛赫空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信