拓扑四元组的共生和倾斜积

IF 0.7 3区 数学 Q2 MATHEMATICS
Lucas Hall
{"title":"拓扑四元组的共生和倾斜积","authors":"Lucas Hall","doi":"10.1017/s0013091524000208","DOIUrl":null,"url":null,"abstract":"Given a cocycle on a topological quiver by a locally compact group, the author constructs a skew product topological quiver and determines conditions under which a topological quiver can be identified as a skew product. We investigate the relationship between the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000208_inline1.png\"/> <jats:tex-math>${C^*}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-algebra of the skew product and a certain native coaction on the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000208_inline2.png\"/> <jats:tex-math>${C^*}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-algebra of the original quiver, finding that the crossed product by the coaction is isomorphic to the skew product. As an application, we show that the reduced crossed product by the dual action is Morita equivalent to the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000208_inline3.png\"/> <jats:tex-math>${C^*}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-algebra of the original quiver.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"45 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coactions and skew products for topological quivers\",\"authors\":\"Lucas Hall\",\"doi\":\"10.1017/s0013091524000208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a cocycle on a topological quiver by a locally compact group, the author constructs a skew product topological quiver and determines conditions under which a topological quiver can be identified as a skew product. We investigate the relationship between the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000208_inline1.png\\\"/> <jats:tex-math>${C^*}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-algebra of the skew product and a certain native coaction on the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000208_inline2.png\\\"/> <jats:tex-math>${C^*}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-algebra of the original quiver, finding that the crossed product by the coaction is isomorphic to the skew product. As an application, we show that the reduced crossed product by the dual action is Morita equivalent to the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000208_inline3.png\\\"/> <jats:tex-math>${C^*}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-algebra of the original quiver.\",\"PeriodicalId\":20586,\"journal\":{\"name\":\"Proceedings of the Edinburgh Mathematical Society\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Edinburgh Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0013091524000208\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Edinburgh Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091524000208","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定局部紧密群在拓扑簇上的循环,作者构建了一个斜积拓扑簇,并确定了拓扑簇可以被识别为斜积的条件。我们研究了斜积的 ${C^*}$ - 代数与原簇的 ${C^*}$ - 代数上的某个本征协效之间的关系,发现协效的交叉积与斜积同构。作为应用,我们证明了对偶作用的还原交叉积与原始簇的 ${C^*}$ - 代数是莫里塔等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coactions and skew products for topological quivers
Given a cocycle on a topological quiver by a locally compact group, the author constructs a skew product topological quiver and determines conditions under which a topological quiver can be identified as a skew product. We investigate the relationship between the ${C^*}$ -algebra of the skew product and a certain native coaction on the ${C^*}$ -algebra of the original quiver, finding that the crossed product by the coaction is isomorphic to the skew product. As an application, we show that the reduced crossed product by the dual action is Morita equivalent to the ${C^*}$ -algebra of the original quiver.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
49
审稿时长
6 months
期刊介绍: The Edinburgh Mathematical Society was founded in 1883 and over the years, has evolved into the principal society for the promotion of mathematics research in Scotland. The Society has published its Proceedings since 1884. This journal contains research papers on topics in a broad range of pure and applied mathematics, together with a number of topical book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信