线性代数群中换元的幂

IF 0.7 3区 数学 Q2 MATHEMATICS
Benjamin Martin
{"title":"线性代数群中换元的幂","authors":"Benjamin Martin","doi":"10.1017/s0013091524000361","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514121451157-0521:S0013091524000361:S0013091524000361_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal G}$</span></span></img></span></span> be a linear algebraic group over <span>k</span>, where <span>k</span> is an algebraically closed field, a pseudo-finite field or the valuation ring of a non-archimedean local field. Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514121451157-0521:S0013091524000361:S0013091524000361_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$G= {\\mathcal G}(k)$</span></span></img></span></span>. We prove that if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514121451157-0521:S0013091524000361:S0013091524000361_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\gamma\\in G$</span></span></img></span></span> such that <span>γ</span> is a commutator and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514121451157-0521:S0013091524000361:S0013091524000361_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\delta\\in G$</span></span></img></span></span> such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514121451157-0521:S0013091524000361:S0013091524000361_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\langle \\delta\\rangle= \\langle \\gamma\\rangle$</span></span></img></span></span> then <span>δ</span> is a commutator. This generalises a result of Honda for finite groups. Our proof uses the Lefschetz principle from first-order model theory.</p>","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"8 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Powers of commutators in linear algebraic groups\",\"authors\":\"Benjamin Martin\",\"doi\":\"10.1017/s0013091524000361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514121451157-0521:S0013091524000361:S0013091524000361_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathcal G}$</span></span></img></span></span> be a linear algebraic group over <span>k</span>, where <span>k</span> is an algebraically closed field, a pseudo-finite field or the valuation ring of a non-archimedean local field. Let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514121451157-0521:S0013091524000361:S0013091524000361_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$G= {\\\\mathcal G}(k)$</span></span></img></span></span>. We prove that if <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514121451157-0521:S0013091524000361:S0013091524000361_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\gamma\\\\in G$</span></span></img></span></span> such that <span>γ</span> is a commutator and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514121451157-0521:S0013091524000361:S0013091524000361_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\delta\\\\in G$</span></span></img></span></span> such that <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514121451157-0521:S0013091524000361:S0013091524000361_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\langle \\\\delta\\\\rangle= \\\\langle \\\\gamma\\\\rangle$</span></span></img></span></span> then <span>δ</span> is a commutator. This generalises a result of Honda for finite groups. Our proof uses the Lefschetz principle from first-order model theory.</p>\",\"PeriodicalId\":20586,\"journal\":{\"name\":\"Proceedings of the Edinburgh Mathematical Society\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Edinburgh Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0013091524000361\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Edinburgh Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091524000361","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 ${\mathcal G}$ 是一个 k 上的线性代数群,其中 k 是一个代数闭域、伪无限域或非拱顶局部域的估值环。让 $G= {\mathcal G}(k)$.我们证明,如果 $\gamma\in G$ 使得 γ 是换元器,并且 $\delta\in G$ 使得 $\langle\delta\rangle= \langle\gamma\rangle$ 那么 δ 是换元器。这概括了本田对有限群的一个结果。我们的证明使用了一阶模型理论中的 Lefschetz 原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Powers of commutators in linear algebraic groups

Let ${\mathcal G}$ be a linear algebraic group over k, where k is an algebraically closed field, a pseudo-finite field or the valuation ring of a non-archimedean local field. Let $G= {\mathcal G}(k)$. We prove that if $\gamma\in G$ such that γ is a commutator and $\delta\in G$ such that $\langle \delta\rangle= \langle \gamma\rangle$ then δ is a commutator. This generalises a result of Honda for finite groups. Our proof uses the Lefschetz principle from first-order model theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
49
审稿时长
6 months
期刊介绍: The Edinburgh Mathematical Society was founded in 1883 and over the years, has evolved into the principal society for the promotion of mathematics research in Scotland. The Society has published its Proceedings since 1884. This journal contains research papers on topics in a broad range of pure and applied mathematics, together with a number of topical book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信