{"title":"线性代数群中换元的幂","authors":"Benjamin Martin","doi":"10.1017/s0013091524000361","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514121451157-0521:S0013091524000361:S0013091524000361_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal G}$</span></span></img></span></span> be a linear algebraic group over <span>k</span>, where <span>k</span> is an algebraically closed field, a pseudo-finite field or the valuation ring of a non-archimedean local field. Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514121451157-0521:S0013091524000361:S0013091524000361_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$G= {\\mathcal G}(k)$</span></span></img></span></span>. We prove that if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514121451157-0521:S0013091524000361:S0013091524000361_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\gamma\\in G$</span></span></img></span></span> such that <span>γ</span> is a commutator and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514121451157-0521:S0013091524000361:S0013091524000361_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\delta\\in G$</span></span></img></span></span> such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514121451157-0521:S0013091524000361:S0013091524000361_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\langle \\delta\\rangle= \\langle \\gamma\\rangle$</span></span></img></span></span> then <span>δ</span> is a commutator. This generalises a result of Honda for finite groups. Our proof uses the Lefschetz principle from first-order model theory.</p>","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"8 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Powers of commutators in linear algebraic groups\",\"authors\":\"Benjamin Martin\",\"doi\":\"10.1017/s0013091524000361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514121451157-0521:S0013091524000361:S0013091524000361_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathcal G}$</span></span></img></span></span> be a linear algebraic group over <span>k</span>, where <span>k</span> is an algebraically closed field, a pseudo-finite field or the valuation ring of a non-archimedean local field. Let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514121451157-0521:S0013091524000361:S0013091524000361_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$G= {\\\\mathcal G}(k)$</span></span></img></span></span>. We prove that if <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514121451157-0521:S0013091524000361:S0013091524000361_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\gamma\\\\in G$</span></span></img></span></span> such that <span>γ</span> is a commutator and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514121451157-0521:S0013091524000361:S0013091524000361_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\delta\\\\in G$</span></span></img></span></span> such that <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514121451157-0521:S0013091524000361:S0013091524000361_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\langle \\\\delta\\\\rangle= \\\\langle \\\\gamma\\\\rangle$</span></span></img></span></span> then <span>δ</span> is a commutator. This generalises a result of Honda for finite groups. Our proof uses the Lefschetz principle from first-order model theory.</p>\",\"PeriodicalId\":20586,\"journal\":{\"name\":\"Proceedings of the Edinburgh Mathematical Society\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Edinburgh Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0013091524000361\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Edinburgh Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091524000361","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let ${\mathcal G}$ be a linear algebraic group over k, where k is an algebraically closed field, a pseudo-finite field or the valuation ring of a non-archimedean local field. Let $G= {\mathcal G}(k)$. We prove that if $\gamma\in G$ such that γ is a commutator and $\delta\in G$ such that $\langle \delta\rangle= \langle \gamma\rangle$ then δ is a commutator. This generalises a result of Honda for finite groups. Our proof uses the Lefschetz principle from first-order model theory.
期刊介绍:
The Edinburgh Mathematical Society was founded in 1883 and over the years, has evolved into the principal society for the promotion of mathematics research in Scotland. The Society has published its Proceedings since 1884. This journal contains research papers on topics in a broad range of pure and applied mathematics, together with a number of topical book reviews.