LuÍs Carvalho, Cristina Diogo, Sérgio Mendes, Helena Soares
{"title":"论四元基本数值范围的凸性","authors":"LuÍs Carvalho, Cristina Diogo, Sérgio Mendes, Helena Soares","doi":"10.1017/s0013091524000336","DOIUrl":null,"url":null,"abstract":"The numerical range in the quaternionic setting is, in general, a non-convex subset of the quaternions. The essential numerical range is a refinement of the numerical range that only keeps the elements that have, in a certain sense, infinite multiplicity. We prove that the essential numerical range of a bounded linear operator on a quaternionic Hilbert space is convex. A quaternionic analogue of Lancaster theorem, relating the closure of the numerical range and its essential numerical range, is also provided.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"4 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the convexity of the quaternionic essential numerical range\",\"authors\":\"LuÍs Carvalho, Cristina Diogo, Sérgio Mendes, Helena Soares\",\"doi\":\"10.1017/s0013091524000336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The numerical range in the quaternionic setting is, in general, a non-convex subset of the quaternions. The essential numerical range is a refinement of the numerical range that only keeps the elements that have, in a certain sense, infinite multiplicity. We prove that the essential numerical range of a bounded linear operator on a quaternionic Hilbert space is convex. A quaternionic analogue of Lancaster theorem, relating the closure of the numerical range and its essential numerical range, is also provided.\",\"PeriodicalId\":20586,\"journal\":{\"name\":\"Proceedings of the Edinburgh Mathematical Society\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Edinburgh Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0013091524000336\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Edinburgh Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091524000336","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the convexity of the quaternionic essential numerical range
The numerical range in the quaternionic setting is, in general, a non-convex subset of the quaternions. The essential numerical range is a refinement of the numerical range that only keeps the elements that have, in a certain sense, infinite multiplicity. We prove that the essential numerical range of a bounded linear operator on a quaternionic Hilbert space is convex. A quaternionic analogue of Lancaster theorem, relating the closure of the numerical range and its essential numerical range, is also provided.
期刊介绍:
The Edinburgh Mathematical Society was founded in 1883 and over the years, has evolved into the principal society for the promotion of mathematics research in Scotland. The Society has published its Proceedings since 1884. This journal contains research papers on topics in a broad range of pure and applied mathematics, together with a number of topical book reviews.