Pharmaceutical nanotechnology最新文献

筛选
英文 中文
Enhanced Transdermal Delivery of Cilnidpine Via Ultradeformable Vesicle Loaded Patch: Statistical Optimization, Characterization and Pharmacokinetic Assessment. 通过超变形载囊贴片增强西尼平的透皮给药:统计优化、特征描述和药代动力学评估
Pharmaceutical nanotechnology Pub Date : 2024-11-04 DOI: 10.2174/0122117385334963241015164501
D Maheswara Reddy, Mothilal M
{"title":"Enhanced Transdermal Delivery of Cilnidpine Via Ultradeformable Vesicle Loaded Patch: Statistical Optimization, Characterization and Pharmacokinetic Assessment.","authors":"D Maheswara Reddy, Mothilal M","doi":"10.2174/0122117385334963241015164501","DOIUrl":"https://doi.org/10.2174/0122117385334963241015164501","url":null,"abstract":"<p><strong>Objective: </strong>The study aimed to address the limitations of oral delivery and enhance the bioavailability of Cilnidipine (often prescribed as antihypertensive drug) (CND) through the development of transdermal patches containing ultra-deformable transferosomes.</p><p><strong>Methods: </strong>CND, known for its low oral bioavailability and adverse effects, was encapsulated in transferosomes using a thin film hydration method. Seventeen formulations were made (using Box Behnken Design), varying Soya lecithin, Tween-80, and rotary evaporator's speed, and evaluated for vesicle size, polydispersity index (PDI), and entrapment efficiency (EE %). The better formulation was selected based on these parameters and incorporated into transdermal patches. Physicochemical properties, in-vitro and ex-vivo permeation, and skin irritancy studies were conducted on the patches. Pharmacokinetic studies were conducted using male Wistar albino rats.</p><p><strong>Results: </strong>The study found that the developed transferosomal formulations had vesicle sizes between 185 nm and 401 nm, entrapment efficiency (EE%) between 63% and 92%, and zeta potential ranging from -52 mV to -20 mV. Both in-vitro and ex-vivo permeation studies showed that transferosomal formulations provided significantly better drug permeation than plain Cilnidipine patches, with increased permeation linked to higher PEG-400 concentrations. The transferosomal patches did not cause skin irritation. The optimized formulation exhibited a higher % drug release (85.7±1.5%). In pharmacokinetic studies using male Wistar albino rats, the transferosomal patch CTP-17 demonstrated a higher maximum concentration (Cmax) of 1565.068 mcg/ml and a greater area under the curve (AUC) of 13225.352 μg h/ml compared to oral administration.</p><p><strong>Conclusion: </strong>The study concludes that the transferosomal patches of CND offer a promising approach for effective transdermal delivery, potentially improving hypertension management for prolonged periods in a controlled manner.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soluplus-Stabilized Nimodipine-Entrapped Spanlastic Formulations Prepared with Edge Activator (Tween20): Comparative Physicochemical Evaluation. 用边缘活化剂(吐温20)制备的Soluplus稳定的尼莫地平包裹斯潘立塑制剂:比较理化评价。
Pharmaceutical nanotechnology Pub Date : 2024-11-04 DOI: 10.2174/0122117385348551241028102256
Hussein K Alkufi, Hanan J Kassab
{"title":"Soluplus-Stabilized Nimodipine-Entrapped Spanlastic Formulations Prepared with Edge Activator (Tween20): Comparative Physicochemical Evaluation.","authors":"Hussein K Alkufi, Hanan J Kassab","doi":"10.2174/0122117385348551241028102256","DOIUrl":"https://doi.org/10.2174/0122117385348551241028102256","url":null,"abstract":"<p><strong>Background: </strong>Nimodipine (ND) is a vasodilator drug that is used for acute subarachnoid hemorrhage. It has a predominant hydrophobic property, causing low solubility and low bioavailability. Spanlastics are elastic nanovesicular systems based on non-ionic surfactants and edge activators as major components. The goal of this work is to formulate ND as spanlastic nanovesicles to improve the drug's bioavailability.</p><p><strong>Methods: </strong>Spanlastic formulations containing ND were prepared by using the ethanol injection method. The composition of the ND formulation includes Span60 as a nonionic surfactant and Tween 20 as edge activators in different ratios. Stabilizers like Soluplus are used in some formulations and then compared with other formulations without that stabilizer. The evaluation study involved Vesicle Size (VS), PolyDispersity Index (PDI), and Entrapment Efficiency (%EE). Then, the optimized formula was subjected to an in vitro release study and zeta potential, additionally comparing the optimized formula with the formula without soluplus in the same concentration in Scanning Electron Microscopy (SEM), solubility study, Deformability Index (DI), and stability study.</p><p><strong>Results: </strong>The results indicated a significant shift in some evaluation criteria and a non-significant change in other characterizations, including the difference in polymer ratio, sonication time, and the existence of a stabilizer. The best formula, F27, was found to have VS, PDI, %EE, and zeta potential of 125.7±0.29 nm, 0.4744±0.002, and 85.43±0.17% and -20.01 ± 0.89 mV, respectively. The photomicrographs of the prepared spanlastic revealed a more uniform and spherical spanlastic, indicating a greater capacity for continuous release. With the addition of Soluplus, the formula became more stable in one month and had a higher deformability index.</p><p><strong>Discussion: </strong>A significant shift was observed in both VS and PDI. As the stabilizer concentration increases, VS and PDI will decrease. The non-significant shift was noted in the %EE with the presence of a stabilizer. Soluplus has the ability to spontaneously self-assemble into spherical particles. Additionally, PEG 6000, as a component of Soluplus's structure, has a tendency to form strong or tightly bound bilayers and prevent aggregation and formulation of large vesicles.</p><p><strong>Conclusion: </strong>This study explains the accessibility of the formulation of ND as spanlastic nanovesicles by using the ethanol injection method. This spanlastic formulation contains non-ionic surfactants and edge activators (Span 40 and Tween 20) in varying ratios. To get a stable formula, Soluplus is added to prevent the development of crystals and agglomeration.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review on Silver Nanoparticles: Synthesis Approaches, Properties, Characterization and Applications. 银纳米颗粒综述:银纳米颗粒:合成方法、特性、表征和应用综述。
Pharmaceutical nanotechnology Pub Date : 2024-11-01 DOI: 10.2174/0122117385313643241010060814
Vishveshwaraiah C K, Kirankumar G B, Harshitha M, Madhu B K
{"title":"A Review on Silver Nanoparticles: Synthesis Approaches, Properties, Characterization and Applications.","authors":"Vishveshwaraiah C K, Kirankumar G B, Harshitha M, Madhu B K","doi":"10.2174/0122117385313643241010060814","DOIUrl":"https://doi.org/10.2174/0122117385313643241010060814","url":null,"abstract":"<p><p>Nanoparticles are a significant topic due to their applications in various fields, including biology, optics, catalysis, pharmaceutics, health, agriculture, and industry, with biosynthesis processes being quick, easy, and environmentally friendly. Due to their applications across multiple industries, silver nanoparticles, or AgNPs, have become the most desired nanoparticles with the recent development of nanotechnology. The physical, chemical, and biological characteristics of AgNPs are being studied. These characteristics are crucial for limiting the hazards associated with silver nanoparticles while optimizing their potential applications in many fields. A higher degree of toxicity in both the environment and living things could arise from the increasing use of silver nanoparticles in the product. Silver nanoparticles find application in wound care, anti-infective therapy, food, pharmaceutical, and cosmetic industries. As antioxidant, antiviral, anticancer, antifungal, antiinflammatory, and microbiological agents, silver nanoparticles are widely used. Not only must the particles be nanoscale in order for silver nanoparticles to be present, but their production must also be simple and inexpensive to achieve. This paper aims to review the different methods of synthesis of silver nanoparticles, properties, characterization, and their applications. In specific, several chemical and green synthesis approaches for synthesising silver nanoparticles have been discussed. The morphology, size, thermal properties, toxicity properties, electrical properties, catalytic properties, and applications of silver nanoparticles are focused. The main focus is on the effective and efficient synthesis of pure silver nanoparticles and their potential applications.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142569251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comprehensive Review on Oleic Acid Vesicles: A Novel Approach to Drug Delivery. 油酸囊泡综述:药物输送的新方法。
Pharmaceutical nanotechnology Pub Date : 2024-10-24 DOI: 10.2174/0122117385317956241008074909
Sandhya S, Jayatheertha S Lokapur, Prakash S Goudanavar
{"title":"A Comprehensive Review on Oleic Acid Vesicles: A Novel Approach to Drug Delivery.","authors":"Sandhya S, Jayatheertha S Lokapur, Prakash S Goudanavar","doi":"10.2174/0122117385317956241008074909","DOIUrl":"https://doi.org/10.2174/0122117385317956241008074909","url":null,"abstract":"<p><p>The implementation of several innovative drug delivery technologies has made medication distribution more focused and managed in recent years. These days, a vesicular drug delivery system defines the rate of distribution and the site of action in order to improve the action and increase patient compliance; there are various kinds of newly developed vesicular drug delivery systems, including transferosomes, niosomes, aquasomes, ufasomes, pharmacosomes, and phytosomes. Ufasomes are unsaturated fatty acid vesicles with a limited pH range of 7 to 9. They are a suspension of closed lipid bilayers made of fatty acids and their ionized species. The hydrocarbon tails of fatty acid molecules are oriented toward the membrane's inner core, and their carboxyl groups are in contact with water. The two fatty acids that are most frequently employed in the ufasomes' manufacturing process are oleic and linoleic acids. It is a common practice to produce fatty acid vesicles via the thin film hydration process. The manufacture of stable ufasomes is mostly dependent on the choice of fatty acids, amount of cholesterol, pH range, buffer, etc. This article goes into additional detail regarding unsaturated fatty acids' characteristics, benefits, and drawbacks.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromatography and Spectroscopic Technique-Based Rapid Characterization of Nano-Carrier Pharmaceuticals. 基于色谱和光谱技术的纳米载体药物快速表征。
Pharmaceutical nanotechnology Pub Date : 2024-10-21 DOI: 10.2174/0122117385319695240911115239
Shamim, Tarmeen Ali
{"title":"Chromatography and Spectroscopic Technique-Based Rapid Characterization of Nano-Carrier Pharmaceuticals.","authors":"Shamim, Tarmeen Ali","doi":"10.2174/0122117385319695240911115239","DOIUrl":"https://doi.org/10.2174/0122117385319695240911115239","url":null,"abstract":"<p><p>A nanocarrier is a novel colloidal system whose particle size ranges between 1-100 nm. It is extensively utilized in drug delivery and various other sectors, such as the pharmaceutical, food, and dairy industries. The nanocarrier systems, including solid lipid nanoparticles, micelles, liposomes, and other encapsulated compounds, have improved stability, solubility, bioavailability, and quality. Nanocarriers offer therapeutic effectiveness with low toxicity because of their biocompatibility and ability to cross body barriers. Various analytical techniques, such as chromatography and spectroscopy, are crucial in qualitative and quantitative analysis of nanocarrier-based formulations. Molecular identification and drug content determination require chromatographic techniques, particularly HPLC. Spectroscopic techniques such as LC-MS, NMR, GC-MS, CE-MS, Raman, and IR are used to analyze the interaction and molecular structure of the sample. Nanocarriers have several benefits but face various challenges like stability, drug loading, regulatory standards, and biocompatibility. Future surface engineering and nanocarrier design advancements could improve targeted drug delivery and sustained diagnostic applications, significantly impacting healthcare.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization, Formulation, and Ex vivo Evaluation of Solid Lipid Nanoparticles for Transdermal Delivery of Diltiazem Hydrochloride. 用于盐酸地尔硫卓透皮给药的固体脂质纳米颗粒的优化、制备和体内外评估
Pharmaceutical nanotechnology Pub Date : 2024-10-11 DOI: 10.2174/0122117385330951240925064813
Sandhya Jaiswal, Ghanshyam Das Gupta
{"title":"Optimization, Formulation, and Ex vivo Evaluation of Solid Lipid Nanoparticles for Transdermal Delivery of Diltiazem Hydrochloride.","authors":"Sandhya Jaiswal, Ghanshyam Das Gupta","doi":"10.2174/0122117385330951240925064813","DOIUrl":"https://doi.org/10.2174/0122117385330951240925064813","url":null,"abstract":"<p><strong>Background: </strong>Cardiac arrhythmia, is a medical condition that reduces the heart's efficiency in pumping blood, and can be fatal, requires long-term management with conventional drugs, despite their limited efficacy. Diltiazem hydrochloride, chosen as a model drug, has a short biological half-life and extensive metabolism. Administering drug through skin is challenging, particularly due to the penetration via stratum corneum. However, solid lipid nanoparticles as a particulate carrier system can enhance its permeation and bioavailability.</p><p><strong>Objective: </strong>The study aimed to develop a matrix type transdermal patch with diltiazem hydrochloride encapsulated in solid lipid nanoparticles Methods: The study used the solvent diffusion technique to prepare SLNs by mixing the drug and solid lipid in an organic phase at 80°C, then slowly adding it to an aqueous phase with continuous stirring for 45 minutes. The resulting nanodispersion was freeze-dried and analyzed for morphological studies, encapsulation efficiency & drug content. A patch was formulated using solvent evaporation technique, incorporating HPMC E50 (2% w/v), propylene glycol, and ethanolic oleic acid (1.5% v/v). SLNs loaded with diltiazem hydrochloride taken equivalent to diltiazem hydrochloride dose in the transdermal patch. The patch was then evaluated for In vitro and skin permeation studies.</p><p><strong>Results: </strong>The result showed a positive correlation between lipid concentration and particle size. Probe sonication and homogenization increased particle size, while stirring speed reduced it. SEM and TEM images confirmed spherical particles with a size of 488.1±4.01nm and an entrapment efficiency of 55.03±1.99%. Drug release studies demonstrated 70.7% drug release from lipid matrix over 24 hrs. The formulated patch with uniform SLN distribution, had a drug content 89.37 ± 0.04% with a surface pH of 6.1 ± 0.53, close to skin pH. The uniformity of content in 3x3 patch estimated to be 14.587 ± 1.404 mg, close to the theoretical content 16.318 ± 1.08 mg, confirmed homogenous distribution of diltiazem hydrochloride SLNs throughout the patch diameter. Cumulative amount released from patch formulation at pH 5.6 and pH 7.4 was 518.1414μg/cm2 and 404.4466 μg/cm2. Synergistic flux enhancement was observed with oleic acid propylene glycol blend. Ex vivo study of the patch showed steady-state flux of 6.9 μg/cm2/hr, permeability coefficient 0.00362 cm/hr, diffusion coefficient 0.000103 cm/hr, cumulative drug permeation (Dmax) 814.885 μg after 24 hrs, and followed a Higuchi-matrix release model.</p><p><strong>Conclusion: </strong>The developed patch possessed improved bioavailability with reduced dosing and enhanced patient compliance.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142471876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comprehensive Review of Self-Nanoemulsifying Systems in the Delivery of Herbal Drugs. 自纳米乳化系统在中草药给药中的应用综述》。
Pharmaceutical nanotechnology Pub Date : 2024-10-11 DOI: 10.2174/0122117385325207240910073653
Manoj Harde, Rashmi Mallya
{"title":"A Comprehensive Review of Self-Nanoemulsifying Systems in the Delivery of Herbal Drugs.","authors":"Manoj Harde, Rashmi Mallya","doi":"10.2174/0122117385325207240910073653","DOIUrl":"https://doi.org/10.2174/0122117385325207240910073653","url":null,"abstract":"<p><p>Self-nanoemulsifying drug delivery systems (SNEDDS) are an isotropic mixture of oils, co-surfactants, and surfactants and can form fine O/W Nanoemulsions in aqueous media. These components are advantageous in terms of improved solubility and bioavailability. Limited permeability, solubility, and bioavailability remain a significant challenge in developing herbal drugs. This review explores the potential of self-nanoemulsifying drug delivery systems (SNEDDS) as a promising strategy to overcome this problem. The SNEDDS is considered a novel technique for the delivery of low water-soluble drugs. It can bypass the first-pass metabolism, resulting in steady and sustained drug levels in the systemic circulation. The present article provides a comprehensive overview of the SNEDDS formulation of herbal drugs. It includes their composition, characterization, in vitro and in vivo studies conducted in various disease conditions, and pharmacokinetic studies.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142471896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipid-Based Nanoparticles as Drug Delivery System for Modern Therapeutics. 将脂质纳米颗粒作为现代疗法的药物输送系统
Pharmaceutical nanotechnology Pub Date : 2024-10-11 DOI: 10.2174/0122117385337379240916053259
Shivani Gandhi, Divyesh Harshadkumar Shastri
{"title":"Lipid-Based Nanoparticles as Drug Delivery System for Modern Therapeutics.","authors":"Shivani Gandhi, Divyesh Harshadkumar Shastri","doi":"10.2174/0122117385337379240916053259","DOIUrl":"https://doi.org/10.2174/0122117385337379240916053259","url":null,"abstract":"<p><p>The emergence of lipid-based nanoparticulate systems has significantly reshaped the landscape of drug delivery. This review aims to encapsulate the advancements, challenges, and potential of lipid-based nanoparticulate drug delivery in modern therapeutics. Lipid-based nanoparticles, including liposomes, lipid nanoparticles, and solid lipid nanoparticles, harness the biocompatibility and biodegradability of lipids to encapsulate and deliver a diverse range of therapeutic agents. This platform offers solutions to various drug delivery challenges, such as enhancing drug solubility and bio- availability, achieving controlled and sustained release, targeted delivery, and co-delivery of multi-agents. These nanoparticles have demonstrated potential in overcoming biological barriers, including the blood-brain barrier, mucosal barriers, and cellular barriers, enabling the delivery of drugs to previously inaccessible sites. Biocompatibility and reduced toxicity are intrinsic attributes of lipid-based nanoparticles, minimizing immune responses and systemic toxicity while promoting personalized medicine possibilities. However, challenges in formulation, stability, and regulatory approval underscore the need for ongoing research and innovation in this field.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142471898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Copper Nanoparticles: Characterization, Synthesis, and Biological Activity - A Review. 纳米铜颗粒:特性、合成和生物活性--综述。
Pharmaceutical nanotechnology Pub Date : 2024-10-09 DOI: 10.2174/0122117385330139240924082840
Dhanashri A Dakhore, Suchita P Dhamane, Sneha N Chintewar, Virendra S Gomase
{"title":"Copper Nanoparticles: Characterization, Synthesis, and Biological Activity - A Review.","authors":"Dhanashri A Dakhore, Suchita P Dhamane, Sneha N Chintewar, Virendra S Gomase","doi":"10.2174/0122117385330139240924082840","DOIUrl":"https://doi.org/10.2174/0122117385330139240924082840","url":null,"abstract":"<p><p>Copper and copper-based nanoparticles, derived from the abundant and cost-effective copper metal, have garnered significant attention due to their unique properties and potential for various applications. Copper is a biogenic metal that is found in all kingdoms of life and has a variety of essential biological activities. Among the earliest metals that humanity has harvested and exploited, copper has played a crucial role in maintaining and advancing civilization since the beginning of time. The article provided sources that shed light on the synthesis, characteristics, and applications of copper and copper nanoparticles, highlighting their historical significance and diverse range of uses.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142471897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Beauty Revolution of Nanotechnology: Unveiling the Impact of Cosmetic Nano Wonders. 纳米技术的美容革命:揭开化妆品纳米奇迹的影响。
Pharmaceutical nanotechnology Pub Date : 2024-10-08 DOI: 10.2174/0122117385309082240924051320
Parul Gupta, Anjali Sharma, Vishnu Mittal
{"title":"The Beauty Revolution of Nanotechnology: Unveiling the Impact of Cosmetic Nano Wonders.","authors":"Parul Gupta, Anjali Sharma, Vishnu Mittal","doi":"10.2174/0122117385309082240924051320","DOIUrl":"https://doi.org/10.2174/0122117385309082240924051320","url":null,"abstract":"<p><p>The infusion of nanotechnology into cosmetic formulations marks a transformative shift in beauty science. Although Raymond Reed originally used the word \"cosmeceutical,\" Dr. Albert Kligman popularised the idea in the late 1970s. Cosmetic Nano Wonders are redefining skincare by leveraging nanomaterials to enhance the stability, delivery, and efficacy of active ingredients. The paradigm shift holds promise for overcoming longstanding challenges in traditional cosmetic formulations. This article aims to explore and showcase the revolutionary impact of nanotechnology on the cosmetic industry. Focusing on key nanocarriers, such as liposomes and nanoparticles, our objective is to illuminate how nanotechnology elevates the performance of beauty products, providing advanced solutions for skincare concerns. This revolution promotes sustainability through green synthesis techniques and enables more accurate and effective therapies for a variety of skin issues, including acne and ageing that raises the bar for safety and innovation in the cosmetics business by enhancing product performance and environmental impact. Conducting a thorough literature review, we analyze recent scientific studies and industry reports to unveil the mechanisms and applications of nanotechnology in cosmetics. Special attention is given to the role of nanocarriers in stability enhancement, targeted delivery, and controlled release, unraveling the methods that drive the transformative potential of Cosmetic Nano Wonders. The database sources are Scopus, PubMed, Google Scholar, and Google Patents. The examination of recent research underscores the tangible benefits of nanotechnology in cosmetics. Cosmetic Nano Wonders demonstrate superior stability, enhanced penetration into skin layers, and controlled release mechanisms, showcasing their potential to revolutionize beauty science and address longstanding challenges in skincare. Cosmetic Nano Wonders represent a groundbreaking shift in beauty science, offering unprecedented possibilities for formulators and consumers. As nanotechnology continues to reshape cosmetic formulations, the future holds the promise of safer, more effective, and personalized skincare solutions, ushering in a new era in beauty science.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信