{"title":"功能化纳米纤维:革命性的药物输送系统和生物医学应用。","authors":"Gaurav Shanbhag, Amruta Prabhakar Padakanti, Prajakta Bule, Lal Bahadur Pal, Naveen Chella","doi":"10.2174/0122117385372124250623054646","DOIUrl":null,"url":null,"abstract":"<p><p>This review article examines functionalized nanofibers and their potential to revolutionize drug delivery systems and enhance their biomedical applications. By leveraging the high surface- area-to-volume ratio and tunable physicochemical properties of nanofibers, the limitations of conventional drug delivery methods can be addressed. These nanofibers can be engineered for the controlled and sustained release of drugs, growth factors, and bioactive agents to improve treatment efficacy and mitigate side effects. Furthermore, the versatility of functionalized nanofibers in various biomedical fields has been investigated. In tissue engineering, nanofibers serve as scaffolds that emulate the extracellular matrix and facilitate cell adhesion, proliferation, and differentiation, thus demonstrating the potential for regenerating tissues and organs, including bone, cartilage, and nerve repair. This review also explores their application in wound healing, where nanofiber dressings incorporating antimicrobial agents and growth factors can expedite healing, prevent infections, and minimize scarring, benefiting patients with chronic wounds, burns, and other complex skin injuries. Additionally, this article discusses the potential of functionalized nanofibers for developing innovative medical devices with therapeutic and diagnostic functions. The integration of sensing elements and drug-releasing components into nanofiber platforms has resulted in multifunctional devices capable of monitoring physiological parameters, detecting biomarkers, and delivering targeted therapies based on biological cues. The versatility of these nanofibers may enable the development of combination products that can incorporate multiple therapeutic modalities into a single platform, potentially enhancing the management of complex diseases and improving patient outcomes. The article aims to provide a comprehensive overview of the current state and future trajectory of electrospinning technology.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functionalized Nanofibers: Revolutionizing Drug Delivery Systems and Biomedical Applications.\",\"authors\":\"Gaurav Shanbhag, Amruta Prabhakar Padakanti, Prajakta Bule, Lal Bahadur Pal, Naveen Chella\",\"doi\":\"10.2174/0122117385372124250623054646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This review article examines functionalized nanofibers and their potential to revolutionize drug delivery systems and enhance their biomedical applications. By leveraging the high surface- area-to-volume ratio and tunable physicochemical properties of nanofibers, the limitations of conventional drug delivery methods can be addressed. These nanofibers can be engineered for the controlled and sustained release of drugs, growth factors, and bioactive agents to improve treatment efficacy and mitigate side effects. Furthermore, the versatility of functionalized nanofibers in various biomedical fields has been investigated. In tissue engineering, nanofibers serve as scaffolds that emulate the extracellular matrix and facilitate cell adhesion, proliferation, and differentiation, thus demonstrating the potential for regenerating tissues and organs, including bone, cartilage, and nerve repair. This review also explores their application in wound healing, where nanofiber dressings incorporating antimicrobial agents and growth factors can expedite healing, prevent infections, and minimize scarring, benefiting patients with chronic wounds, burns, and other complex skin injuries. Additionally, this article discusses the potential of functionalized nanofibers for developing innovative medical devices with therapeutic and diagnostic functions. The integration of sensing elements and drug-releasing components into nanofiber platforms has resulted in multifunctional devices capable of monitoring physiological parameters, detecting biomarkers, and delivering targeted therapies based on biological cues. The versatility of these nanofibers may enable the development of combination products that can incorporate multiple therapeutic modalities into a single platform, potentially enhancing the management of complex diseases and improving patient outcomes. The article aims to provide a comprehensive overview of the current state and future trajectory of electrospinning technology.</p>\",\"PeriodicalId\":19774,\"journal\":{\"name\":\"Pharmaceutical nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0122117385372124250623054646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385372124250623054646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Functionalized Nanofibers: Revolutionizing Drug Delivery Systems and Biomedical Applications.
This review article examines functionalized nanofibers and their potential to revolutionize drug delivery systems and enhance their biomedical applications. By leveraging the high surface- area-to-volume ratio and tunable physicochemical properties of nanofibers, the limitations of conventional drug delivery methods can be addressed. These nanofibers can be engineered for the controlled and sustained release of drugs, growth factors, and bioactive agents to improve treatment efficacy and mitigate side effects. Furthermore, the versatility of functionalized nanofibers in various biomedical fields has been investigated. In tissue engineering, nanofibers serve as scaffolds that emulate the extracellular matrix and facilitate cell adhesion, proliferation, and differentiation, thus demonstrating the potential for regenerating tissues and organs, including bone, cartilage, and nerve repair. This review also explores their application in wound healing, where nanofiber dressings incorporating antimicrobial agents and growth factors can expedite healing, prevent infections, and minimize scarring, benefiting patients with chronic wounds, burns, and other complex skin injuries. Additionally, this article discusses the potential of functionalized nanofibers for developing innovative medical devices with therapeutic and diagnostic functions. The integration of sensing elements and drug-releasing components into nanofiber platforms has resulted in multifunctional devices capable of monitoring physiological parameters, detecting biomarkers, and delivering targeted therapies based on biological cues. The versatility of these nanofibers may enable the development of combination products that can incorporate multiple therapeutic modalities into a single platform, potentially enhancing the management of complex diseases and improving patient outcomes. The article aims to provide a comprehensive overview of the current state and future trajectory of electrospinning technology.
期刊介绍:
Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.