{"title":"基于纳米技术的靶向药物递送和增强治疗效果的纳米乳递送系统综述。","authors":"Mukesh Kumar, Divya Pathak","doi":"10.2174/0122117385388338250711001010","DOIUrl":null,"url":null,"abstract":"<p><p>Herbal medicine has been a cornerstone of traditional healthcare for centuries, offering a wide array of bioactive compounds derived from plants. However, its efficacy is often limited by poor bioavailability, instability, and non-targeted delivery. Recent advancements in nanotechnology have provided innovative solutions to these challenges through developing nanoemulsion delivery systems. These systems enhance the solubility and stability of herbal extracts, ensuring targeted delivery to specific tissues or cells. Nanocarriers such as liposomes, solid lipid nanoparticles, and polymeric nanoparticles can encapsulate bioactive compounds, protecting them from degradation and facilitating controlled release. This approach not only improves therapeutic outcomes but also reduces side effects by minimizing exposure to non-targeted areas. Furthermore, nanotechnology allows for personalized medicine by tailoring nanocarriers to individual patient needs, enhancing treatment efficacy and compliance. The integration of nanotechnology with herbal medicine holds significant potential for revolutionizing healthcare by providing more effective and targeted treatments for various diseases, including cancer, neurological disorders, and cardiovascular diseases.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comprehensive Review of Nanotechnology Based Nanoemulsion Delivery Systems for Targeted Drug Delivery and Enhanced Therapeutic Efficacy.\",\"authors\":\"Mukesh Kumar, Divya Pathak\",\"doi\":\"10.2174/0122117385388338250711001010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Herbal medicine has been a cornerstone of traditional healthcare for centuries, offering a wide array of bioactive compounds derived from plants. However, its efficacy is often limited by poor bioavailability, instability, and non-targeted delivery. Recent advancements in nanotechnology have provided innovative solutions to these challenges through developing nanoemulsion delivery systems. These systems enhance the solubility and stability of herbal extracts, ensuring targeted delivery to specific tissues or cells. Nanocarriers such as liposomes, solid lipid nanoparticles, and polymeric nanoparticles can encapsulate bioactive compounds, protecting them from degradation and facilitating controlled release. This approach not only improves therapeutic outcomes but also reduces side effects by minimizing exposure to non-targeted areas. Furthermore, nanotechnology allows for personalized medicine by tailoring nanocarriers to individual patient needs, enhancing treatment efficacy and compliance. The integration of nanotechnology with herbal medicine holds significant potential for revolutionizing healthcare by providing more effective and targeted treatments for various diseases, including cancer, neurological disorders, and cardiovascular diseases.</p>\",\"PeriodicalId\":19774,\"journal\":{\"name\":\"Pharmaceutical nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0122117385388338250711001010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385388338250711001010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
A Comprehensive Review of Nanotechnology Based Nanoemulsion Delivery Systems for Targeted Drug Delivery and Enhanced Therapeutic Efficacy.
Herbal medicine has been a cornerstone of traditional healthcare for centuries, offering a wide array of bioactive compounds derived from plants. However, its efficacy is often limited by poor bioavailability, instability, and non-targeted delivery. Recent advancements in nanotechnology have provided innovative solutions to these challenges through developing nanoemulsion delivery systems. These systems enhance the solubility and stability of herbal extracts, ensuring targeted delivery to specific tissues or cells. Nanocarriers such as liposomes, solid lipid nanoparticles, and polymeric nanoparticles can encapsulate bioactive compounds, protecting them from degradation and facilitating controlled release. This approach not only improves therapeutic outcomes but also reduces side effects by minimizing exposure to non-targeted areas. Furthermore, nanotechnology allows for personalized medicine by tailoring nanocarriers to individual patient needs, enhancing treatment efficacy and compliance. The integration of nanotechnology with herbal medicine holds significant potential for revolutionizing healthcare by providing more effective and targeted treatments for various diseases, including cancer, neurological disorders, and cardiovascular diseases.
期刊介绍:
Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.