Nanocarriers in Atopic Dermatitis Therapy: A Comprehensive Exploration.

Q2 Pharmacology, Toxicology and Pharmaceutics
Meriem Rezigue, Rasha M Bashatwah, Khaled I Seetan, Alaa A A Aljabali
{"title":"Nanocarriers in Atopic Dermatitis Therapy: A Comprehensive Exploration.","authors":"Meriem Rezigue, Rasha M Bashatwah, Khaled I Seetan, Alaa A A Aljabali","doi":"10.2174/0122117385373434250705125526","DOIUrl":null,"url":null,"abstract":"<p><p>In this comprehensive exploration of advanced nanocarriers for atopic dermatitis (AD) therapy, we explored a spectrum of innovative delivery systems, each with unique attributes poised to revolutionize topical drug administration. Lipid nanoparticles, including solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), have emerged as stalwarts offering controlled drug release and enhanced skin penetration. Vesicular systems such as liposomes, ethosomes, transfersomes, and niosomes are versatile in their ability to encapsulate hydrophilic and lipophilic agents and overcome barriers to drug permeation. Microemulsions and nanoemulsions exhibit good stability and effective drug permeation, whereas the addition of polymeric nanoparticles allows for efficient targeting with less toxicity. AuNPs and AgNPs allow for targeted delivery and immune modulation, whereas skin lipids restore this barrier. siRNA-silenced genes are involved in inflammation, whereas immunobiologics reset immune responses. These nanocarriers offer tremendous opportunities for the personalized treatment of AD, reduction in systemic exposure, and enhancement of therapeutic efficacy. Overcoming formulation hurdles and instability concerns, in addition to an indepth understanding of the possibility of achieving game-changing improvements in the management of AD, has placed nanocarriers at the forefront of new and personalized therapeutic approaches that would redefine the care of patients affected by this devastating disease.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385373434250705125526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

In this comprehensive exploration of advanced nanocarriers for atopic dermatitis (AD) therapy, we explored a spectrum of innovative delivery systems, each with unique attributes poised to revolutionize topical drug administration. Lipid nanoparticles, including solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), have emerged as stalwarts offering controlled drug release and enhanced skin penetration. Vesicular systems such as liposomes, ethosomes, transfersomes, and niosomes are versatile in their ability to encapsulate hydrophilic and lipophilic agents and overcome barriers to drug permeation. Microemulsions and nanoemulsions exhibit good stability and effective drug permeation, whereas the addition of polymeric nanoparticles allows for efficient targeting with less toxicity. AuNPs and AgNPs allow for targeted delivery and immune modulation, whereas skin lipids restore this barrier. siRNA-silenced genes are involved in inflammation, whereas immunobiologics reset immune responses. These nanocarriers offer tremendous opportunities for the personalized treatment of AD, reduction in systemic exposure, and enhancement of therapeutic efficacy. Overcoming formulation hurdles and instability concerns, in addition to an indepth understanding of the possibility of achieving game-changing improvements in the management of AD, has placed nanocarriers at the forefront of new and personalized therapeutic approaches that would redefine the care of patients affected by this devastating disease.

纳米载体在特应性皮炎治疗中的综合探索。
在对特应性皮炎(AD)治疗的先进纳米载体的全面探索中,我们探索了一系列创新的给药系统,每个系统都具有独特的属性,准备彻底改变局部给药。脂质纳米颗粒,包括固体脂质纳米颗粒(SLN)和纳米结构脂质载体(NLC),已经成为控制药物释放和增强皮肤渗透的坚实支柱。囊泡系统,如脂质体、脂质体、转移体和乳质体,在它们包封亲水性和亲脂性药物和克服药物渗透障碍的能力方面是通用的。微乳液和纳米乳液表现出良好的稳定性和有效的药物渗透,而聚合物纳米颗粒的加入允许有效的靶向和更小的毒性。AuNPs和AgNPs允许靶向递送和免疫调节,而皮肤脂质恢复这一屏障。sirna沉默基因参与炎症反应,而免疫生物学则重置免疫反应。这些纳米载体为阿尔茨海默病的个性化治疗、减少全身暴露和提高治疗效果提供了巨大的机会。克服配方障碍和不稳定性问题,以及对在阿尔茨海默病管理中实现改变游戏规则的改进的可能性的深入了解,已经将纳米载体置于新的个性化治疗方法的前沿,这些治疗方法将重新定义受这种毁灭性疾病影响的患者的护理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmaceutical nanotechnology
Pharmaceutical nanotechnology Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.20
自引率
0.00%
发文量
46
期刊介绍: Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信