Vaishali Thakkar, Prima Patel, Khyati Parekh, Hardik Rana, Bhupendra Prajapati
{"title":"Development and Optimization of a Cilostazol-Loaded Nanomicelle Transdermal Patch for Hypertension Management.","authors":"Vaishali Thakkar, Prima Patel, Khyati Parekh, Hardik Rana, Bhupendra Prajapati","doi":"10.2174/0122117385362916250630053000","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study aimed to develop and optimize a cilostazol-loaded nanomicelle transdermal patch to enhance solubility, stability, and controlled drug release.</p><p><strong>Objective: </strong>To improve cilostazol bioavailability by formulating a stable, nanomicelle-loaded transdermal patch.</p><p><strong>Methods: </strong>Nanomicelles were prepared using the thin-film hydration method with Soluplus and Poloxamer 188 as the polymer and surfactant. The transdermal patch was fabricated using the solvent casting method and evaluated for tensile strength, folding endurance, and in vitro drug diffusion.</p><p><strong>Results: </strong>The optimized formulation showed 97.71% entrapment efficiency, 48.86% drug loading, a particle size of 129.07 nm, and a zeta potential of -21.5 mV. The patch exhibited a tensile strength of 141.83 MPa, folding endurance of over 300 folds, and sustained in vitro drug diffusion.</p><p><strong>Conclusion: </strong>The developed transdermal patch offers a promising strategy to enhance cilostazol bioavailability by bypassing first-pass metabolism, promoting better penetration, and ensuring improved patient compliance.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385362916250630053000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Background: This study aimed to develop and optimize a cilostazol-loaded nanomicelle transdermal patch to enhance solubility, stability, and controlled drug release.
Objective: To improve cilostazol bioavailability by formulating a stable, nanomicelle-loaded transdermal patch.
Methods: Nanomicelles were prepared using the thin-film hydration method with Soluplus and Poloxamer 188 as the polymer and surfactant. The transdermal patch was fabricated using the solvent casting method and evaluated for tensile strength, folding endurance, and in vitro drug diffusion.
Results: The optimized formulation showed 97.71% entrapment efficiency, 48.86% drug loading, a particle size of 129.07 nm, and a zeta potential of -21.5 mV. The patch exhibited a tensile strength of 141.83 MPa, folding endurance of over 300 folds, and sustained in vitro drug diffusion.
Conclusion: The developed transdermal patch offers a promising strategy to enhance cilostazol bioavailability by bypassing first-pass metabolism, promoting better penetration, and ensuring improved patient compliance.
期刊介绍:
Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.