Molecular Pain最新文献

筛选
英文 中文
Mitochondrial reactivity following acute exposure to experimental pain testing in people with HIV and chronic pain. HIV和慢性疼痛患者急性暴露于实验性疼痛测试后的线粒体反应。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069231195975
Shannon R Gilstrap, Joanna M Hobson, Michael A Owens, Dyan M White, Melissa J Sammy, Scott Ballinger, Robert E Sorge, Burel R Goodin
{"title":"Mitochondrial reactivity following acute exposure to experimental pain testing in people with HIV and chronic pain.","authors":"Shannon R Gilstrap, Joanna M Hobson, Michael A Owens, Dyan M White, Melissa J Sammy, Scott Ballinger, Robert E Sorge, Burel R Goodin","doi":"10.1177/17448069231195975","DOIUrl":"10.1177/17448069231195975","url":null,"abstract":"<p><p><b>Background:</b> Physical stressors can cause a physiological response that can contribute to an increase in mitochondrial dysfunction and Mitochondrial DNA damage (mtDNA damage). People living with HIV (PWH) are more likely to suffer from chronic pain and may be more susceptible to mitochondrial dysfunction following exposure to a stressor. We used Quantitative Sensory Testing (QST) as an acute painful stressor in order to investigate whether PWH with/without chronic pain show differential mitochondrial physiological responses. <b>Methods:</b> The current study included PWH with (<i>n</i> = 26), and without (<i>n</i> = 29), chronic pain. Participants completed a single session that lasted approximately 180 min, including QST. Blood was taken prior to and following the QST battery for assays measuring mtDNA damage, mtDNA copy number, and mtDNA damage-associated molecular pattern (DAMP) levels (i.e., ND1 and ND6). <b>Results:</b> We examined differences between those with and without pain on various indicators of mitochondrial reactivity following exposure to QST. However, only ND6 and mtDNA damage were shown to be statistically significant between pain groups. <b>Conclusion:</b> PWH with chronic pain showed greater mitochondrial reactivity to laboratory stressors. Consequently, PWH and chronic pain may be more susceptible to conditions in which mitochondrial damage/dysfunction play a central role, such as cognitive decline.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f7/a1/10.1177_17448069231195975.PMC10467217.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10116721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stomatin-like protein 3 modulates the responses of Aδ, but not C fiber bone afferent neurons to noxious mechanical stimulation in an animal model of acute experimental bone pain. 在急性实验性骨痛动物模型中,类黏蛋白3能调节Aδ纤维骨传入神经元对有害机械刺激的反应,但不能调节C纤维骨传入神经元对有害机械刺激的反应。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069231222407
Michael Morgan, Jenny Thai, Sara Nencini, James Xu, Jason J Ivanusic
{"title":"Stomatin-like protein 3 modulates the responses of Aδ, but not C fiber bone afferent neurons to noxious mechanical stimulation in an animal model of acute experimental bone pain.","authors":"Michael Morgan, Jenny Thai, Sara Nencini, James Xu, Jason J Ivanusic","doi":"10.1177/17448069231222407","DOIUrl":"10.1177/17448069231222407","url":null,"abstract":"<p><p>STOML3 is a membrane bound scaffolding protein that has been shown to facilitate the opening of mechanically sensitive ion channels and contribute to noxious mechanical sensation, allodynia and hyperalgesia. In this study, we aimed to determine the role of STOML3 in noxious mechanical sensitivity of bone afferent neurons and carrageenan-induced acute inflammation in the bone. An <i>in</i> <i>vivo</i><i>,</i> electrophysiological bone-nerve preparation was used to make recordings of the activity and sensitivity of bone afferent neurons that innervate the tibial marrow cavity in anaesthetised rats, in response to noxious mechanical stimuli delivered to the marrow cavity, before and after injection of either the STOML3 oligomerisation inhibitor OB-1 or vehicle, in either naïve animals or animals with carrageenan-induced inflammation of the marrow cavity. A dynamic weight-bearing apparatus was used to measure weight bearing in response to inflammatory pain before and after injection of OB-1 or saline into the tibial marrow cavity in the presence of carrageenan-induced inflammation. Electrophysiological recordings revealed that Aδ, but not C bone afferent neurons have a reduced discharge frequency in response to mechanical stimulation, and that carrageenan-induced sensitisation of Aδ, but not C bone afferent neurons was attenuated by inhibition of STOML3 oligomerisation with OB-1. Animals treated with OB-1 spent a significantly greater amount of time on the limb injected with carrageenan than animals treated with saline. Our findings demonstrate that inhibition of STOML3 oligomerisation reduces inflammatory bone pain by reducing the sensitivity of Aδ bone afferent neurons to mechanical stimulation. Targeting STOML3 may be an effective approach to reduce pain from noxious pressure and/or painful inflammatory pathology in bone.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10734363/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138799985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Involvement of interferon gamma signaling in spinal trigeminal caudal subnucleus astrocyte in orofacial neuropathic pain in rats with infraorbital nerve injury. 干扰素γ在眶下神经损伤大鼠脊髓三叉神经尾下核星形胶质细胞中的信号转导参与了口面部神经痛的发生
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069231222403
Sayaka Asano, Akiko Okada-Ogawa, Momoyo Kobayashi, Mamiko Yonemoto, Yasushi Hojo, Ikuko Shibuta, Noboru Noma, Koichi Iwata, Suzuro Hitomi, Masamichi Shinoda
{"title":"Involvement of interferon gamma signaling in spinal trigeminal caudal subnucleus astrocyte in orofacial neuropathic pain in rats with infraorbital nerve injury.","authors":"Sayaka Asano, Akiko Okada-Ogawa, Momoyo Kobayashi, Mamiko Yonemoto, Yasushi Hojo, Ikuko Shibuta, Noboru Noma, Koichi Iwata, Suzuro Hitomi, Masamichi Shinoda","doi":"10.1177/17448069231222403","DOIUrl":"10.1177/17448069231222403","url":null,"abstract":"<p><p><i>Background</i>: Trigeminal nerve injury causes orofacial pain that can interfere with activities of daily life. However, the underlying mechanism remains unknown, and the appropriate treatment has not been established yet. This study aimed to examine the involvement of interferon gamma (IFN-γ) signaling in the spinal trigeminal caudal subnucleus (Vc) in orofacial neuropathic pain. <i>Methods</i>: Infraorbital nerve (ION) injury (IONI) was performed in rats by partial ION ligation. The head-withdrawal reflex threshold (HWT) to mechanical stimulation of the whisker pad skin was measured in IONI or sham rats, as well as following a continuous intracisterna magna administration of IFN-γ and a mixture of IFN-γ and fluorocitrate (inhibitor of astrocytes activation) in naïve rats, or an IFN-γ antagonist in IONI rats. The IFN-γ receptor immunohistochemistry and IFN-γ Western blotting were analyzed in the Vc after IONI or sham treatment. The glial fibrillary acid protein (GFAP) immunohistochemistry and Western blotting were also analyzed after administration of IFN-γ and the mixture of IFN-γ and fluorocitrate. Moreover, the change in single neuronal activity in the Vc was examined in the IONI, sham, and IONI group administered IFN-γ antagonist. <i>Results</i>: The HWT decreased after IONI. The IFN-γ and IFN-γ receptor were upregulated after IONI, and the IFN-γ receptor was expressed in Vc astrocytes. IFN-γ administration decreased the HWT, whereas the mixture of IFN-γ and fluorocitrate recovered the decrement of HWT. IFN-γ administration upregulated GFAP expression, while the mixture of IFN-γ and fluorocitrate recovered the upregulation of GFAP expression. IONI significantly enhanced the neuronal activity of the mechanical-evoked responses, and administration of an IFN-γ antagonist significantly inhibited these enhancements. <i>Conclusions</i>: IFN-γ signaling through the receptor in astrocytes is a key mechanism underlying orofacial neuropathic pain associated with trigeminal nerve injury. These findings will aid in the development of therapeutics for orofacial neuropathic pain.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138800008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spinal HDAC6 mediates nociceptive behaviors induced by chronic constriction injury via neuronal activation and neuroinflammation. 脊髓HDAC6通过神经元激活和神经炎症介导CCI诱导的伤害性行为。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069231218352
Kai Sun, Hao Zhang, Ting Zhang, Nan Sun, Jingru Hao, Zhiping Wang, Can Gao
{"title":"Spinal HDAC6 mediates nociceptive behaviors induced by chronic constriction injury via neuronal activation and neuroinflammation.","authors":"Kai Sun, Hao Zhang, Ting Zhang, Nan Sun, Jingru Hao, Zhiping Wang, Can Gao","doi":"10.1177/17448069231218352","DOIUrl":"10.1177/17448069231218352","url":null,"abstract":"<p><p>Neuropathic pain (NP) is often accompanied by psychiatric comorbidities and currently lacks effective treatment. Prior research has shown that HDAC6 plays a crucial role in pain sensitization, but the specific mechanisms remain unclear. HDAC6 inhibitors have been found to alleviate mechanical allodynia caused by inflammation and peripheral nerve damage. In this study, we investigated the cellular mechanisms of HDAC6 in the development and maintenance of neuropathic pain. Our findings indicate that HDAC6 expression in the spinal cord (SC) is upregulated in a time-dependent manner following chronic constriction injury (CCI). HDAC6 is primarily expressed in neurons and microglia in the spinal cord. CCI-induced HDAC6 production was abolished by intrathecal injection of a microglia inhibitor. ACY-1215, a specific HDAC6 inhibitor, significantly reduced CCI-induced mechanical allodynia, but not thermal hyperalgesia. ACY-1215 also inhibited neuron activation and suppressed CCI-induced pyroptosis and neuroinflammatory responses. In summary, our results suggest that HDAC6 contributes to the development and maintenance of NP through neuronal activation and neuroinflammation. HDAC6 may be a promising target for treating NP.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10734332/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138047402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acute sleep deprivation aggravates nitroglycerin-evoked hyperalgesia in mice. 急性睡眠剥夺加重小鼠硝酸甘油诱发的痛觉过敏。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069221149645
Zhe Yu, Bozhi Li, Wenjing Tang, Zhao Dong, Ruozhuo Liu, Shengyuan Yu
{"title":"Acute sleep deprivation aggravates nitroglycerin-evoked hyperalgesia in mice.","authors":"Zhe Yu,&nbsp;Bozhi Li,&nbsp;Wenjing Tang,&nbsp;Zhao Dong,&nbsp;Ruozhuo Liu,&nbsp;Shengyuan Yu","doi":"10.1177/17448069221149645","DOIUrl":"https://doi.org/10.1177/17448069221149645","url":null,"abstract":"<p><p>Sleep deprivation can trigger migraine, and migraineurs often choose to sleep to relieve headaches during acute migraine. This study aimed to explore the effect of acute sleep deprivation on hyperalgesia induced by nitroglycerin in mice. In part one, after either 6-h sleep deprivation or 6-h normal sleep, mice were intraperitoneally injected with nitroglycerin or saline. The mechanical pain threshold and withdrawal latency of the hindpaw were measured every 30 min for 6 h. Next, the same sleep deprivation and injection procedure was performed with new mice, and mice were sacrificed 4.5 h after injection. The trigeminal nucleus caudalis and upper cervical spinal segments were taken for immunofluorescence Fos staining. In part two, after injection of saline or nitroglycerin, the mice were either deprived of sleep for 6 h or allowed to sleep without interference. The mechanical and thermal pain threshold were measured after 6 h. In part three, we compared the sleep time of mice after intraperitoneal injection of saline or nitroglycerin without interference. Sleep deprivation for 6 h did not cause any changes in the baseline pain thresholds in mice. However, pretreatment with 6-h sleep deprivation significantly prolonged the duration of hyperalgesia induced by nitroglycerin. Additionally, the expression of Fos at 4.5 h was significantly higher in the 6-h sleep deprivation and nitroglycerin group than in the other three groups. When intraperitoneal injection was given first, the mechanical pain threshold of the hind paw was significantly lower in the group that received nitroglycerin with 6-h sleep deprivation than in the other groups. Compared to the saline injection, one-time nitroglycerin injection would result in a significant increase in sleep latency and decrease in sleep duration for the normal mice. Acute sleep deprivation significantly aggravated the hyperalgesia induced by nitroglycerin in mice, which highlights the importance of sleep disorders for migraine.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fe/f7/10.1177_17448069221149645.PMC9830572.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10645666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction Notice. 撤回通知。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069231161238
{"title":"Retraction Notice.","authors":"","doi":"10.1177/17448069231161238","DOIUrl":"10.1177/17448069231161238","url":null,"abstract":"","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b1/0c/10.1177_17448069231161238.PMC10074633.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9250399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of the concentration of growth associated protein-43 and glial cell-derived neurotrophic factor in degenerated intervertebral discs of the lumbosacral region of the spine. 脊柱腰骶区退变椎间盘中生长相关蛋白-43和胶质细胞源性神经营养因子浓度的评价。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069231158287
RafaÅ Staszkiewcz, Marcin Gralewski, Dorian gÅ Adysz, Kamil bryÅ, Tomasz Francuz, Wojciech Garczorz, michaÅ Garczarek, Marcin Gadzielinski, wiesÅ Aw Marcol, Dawid sobaÅ Ski, Beniamin Oskar Grabarek
{"title":"Evaluation of the concentration of growth associated protein-43 and glial cell-derived neurotrophic factor in degenerated intervertebral discs of the lumbosacral region of the spine.","authors":"RafaÅ Staszkiewcz,&nbsp;Marcin Gralewski,&nbsp;Dorian gÅ Adysz,&nbsp;Kamil bryÅ,&nbsp;Tomasz Francuz,&nbsp;Wojciech Garczorz,&nbsp;michaÅ Garczarek,&nbsp;Marcin Gadzielinski,&nbsp;wiesÅ Aw Marcol,&nbsp;Dawid sobaÅ Ski,&nbsp;Beniamin Oskar Grabarek","doi":"10.1177/17448069231158287","DOIUrl":"https://doi.org/10.1177/17448069231158287","url":null,"abstract":"<p><p>Important neurotrophic factors that are potentially involved in degenerative intervertebral disc (IVD) disease of the spine's lumbosacral (L/S) region include glial cell-derived neurotrophic factor (GDNF) and growth associated protein 43 (GAP-43). The aim of this study was to determine and compare the concentrations of GAP-43 and GDNF in degenerated and healthy IVDs and to quantify and compare the GAP-43-positive and GDNF-positive nerve fibers. The study group consisted of 113 Caucasian patients with symptomatic lumbosacral discopathy (confirmed by a specialist surgeon), an indication for surgical treatment. The control group included 81 people who underwent postmortem examination. GAP-43 and GDNF concentrations were significantly higher in IVD samples from the study group compared with the control group, and the highest concentrations were observed in the degenerated IVDs that were graded 4 on the Pfirrmann scale. In the case of GAP-43, it was found that as the degree of IVD degeneration increased, the number of GAP-43-positive nerve fibers decreased. In the case of GDNF, the greatest number of fibers per mm<sup>2</sup> of surface area was found in the IVD samples graded 3 on the Pfirrmann scale, and the number was found to be lower in samples graded 4 and 5. Hence, GAP-43 and GDNF are promising targets for analgesic treatment of degenerative IVD disease of the lumbosacral region of the spine.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d3/e1/10.1177_17448069231158287.PMC10071099.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9636382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effects of chronic high-dose morphine on microgliosis and the microglial transcriptome in rat spinal cord. 慢性大剂量吗啡对大鼠脊髓小胶质细胞增生及小胶质细胞转录组的影响。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069231183902
Fredrik H G Ahlstrà M, Hanna Viisanen, Leena Karhinen, Kert Mã Tlik, Kim J Blomqvist, Tuomas Lilius, Yulia A Sidorova, Vinko Palada, Pekka Rauhala, Eija Kalso
{"title":"The effects of chronic high-dose morphine on microgliosis and the microglial transcriptome in rat spinal cord.","authors":"Fredrik H G Ahlstrà M,&nbsp;Hanna Viisanen,&nbsp;Leena Karhinen,&nbsp;Kert Mã Tlik,&nbsp;Kim J Blomqvist,&nbsp;Tuomas Lilius,&nbsp;Yulia A Sidorova,&nbsp;Vinko Palada,&nbsp;Pekka Rauhala,&nbsp;Eija Kalso","doi":"10.1177/17448069231183902","DOIUrl":"https://doi.org/10.1177/17448069231183902","url":null,"abstract":"<p><p><b>Background:</b> Opioids are efficacious and safe analgesic drugs in short-term use for acute pain but chronic use can lead to tolerance and dependence. Opioid-induced microglial activation may contribute to the development of tolerance and this process may differ between males and females. A link is suggested between this microglial activation and inflammation, disturbances of circadian rhythms, and neurotoxic effects. We set out to further delineate the effects of chronic morphine on pain behaviour, microglial and neuronal staining, and the transcriptome of spinal microglia, to better understand the role of microglia in the consequences of long-term high-dose opioid administration. <b>Experimental Approach:</b> In two experiments, we administered increasing subcutaneous doses of morphine hydrochloride or saline to male and female rats. Thermal nociception was assessed with the tail flick and hot plate tests. In Experiment I, spinal cord (SC) samples were prepared for immunohistochemical staining for microglial and neuronal markers. In Experiment II, the transcriptome of microglia from the lumbar SC was analysed. <b>Key Results:</b> Female and male rats had similar antinociceptive responses to morphine and developed similar antinociceptive tolerance to thermal stimuli following chronic increasing high doses of s.c. morphine. The area of microglial IBA1-staining in SC decreased after 2 weeks of morphine administration in both sexes. Following morphine treatment, the differentially expressed genes identified in the microglial transcriptome included ones related to the circadian rhythm<i>,</i> apoptosis, and immune system processes. <b>Conclusions:</b> Female and male rats showed similar pain behaviour following chronic high doses of morphine. This was associated with decreased staining of spinal microglia, suggesting either decreased activation or apoptosis. High-dose morphine administration also associated with several changes in gene expression in SC microglia, e.g., those related to the circadian rhythm (<i>Per2, Per3, Dbp</i>). These changes should be considered in the clinical consequences of long-term high-dose administration of opioids.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10331785/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9825977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The rs216009 single-nucleotide polymorphism of the CACNA1C gene is associated with phantom tooth pain. CACNA1C基因rs216009单核苷酸多态性与体模牙痛有关。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069231193383
Masako Morii, Seii Ohka, Daisuke Nishizawa, Junko Hasegawa, Kyoko Nakayama, Yuko Ebata, Moe Soeda, Ken-Ichi Fukuda, Kaori Yoshida, Kyotaro Koshika, Tatsuya Ichinohe, Kazutaka Ikeda
{"title":"The rs216009 single-nucleotide polymorphism of the <i>CACNA1C</i> gene is associated with phantom tooth pain.","authors":"Masako Morii,&nbsp;Seii Ohka,&nbsp;Daisuke Nishizawa,&nbsp;Junko Hasegawa,&nbsp;Kyoko Nakayama,&nbsp;Yuko Ebata,&nbsp;Moe Soeda,&nbsp;Ken-Ichi Fukuda,&nbsp;Kaori Yoshida,&nbsp;Kyotaro Koshika,&nbsp;Tatsuya Ichinohe,&nbsp;Kazutaka Ikeda","doi":"10.1177/17448069231193383","DOIUrl":"10.1177/17448069231193383","url":null,"abstract":"<p><p>Phantom tooth pain (PTP) is a rare and specific neuropathic pain that occurs after pulpectomy and tooth extraction, but its cause is not understood. We hypothesized that there is a genetic contribution to PTP. The present study focused on the <i>CACNA1C</i> gene, which encodes the α1C subunit of the Ca<sub>v</sub>1.2 L-type Ca<sup>2+</sup> channel (LTCC) that has been reported to be associated with neuropathic pain in previous studies. We investigated genetic polymorphisms that contribute to PTP. We statistically examined the association between genetic polymorphisms and PTP vulnerability in 33 patients with PTP and 118 patients without PTP but with pain or dysesthesia in the orofacial region. From within and around the <i>CACNA1C</i> gene, 155 polymorphisms were selected and analyzed for associations with clinical data. We found that the rs216009 single-nucleotide polymorphism (SNP) of the <i>CACNA1C</i> gene in the recessive model was significantly associated with the vulnerability to PTP. Homozygote carriers of the minor C allele of rs216009 had a higher rate of PTP. Nociceptive transmission in neuropathic pain has been reported to involve Ca<sup>2+</sup> influx from LTCCs, and the rs216009 polymorphism may be involved in <i>CACNA1C</i> expression, which regulates intracellular Ca<sup>2+</sup> levels, leading to the vulnerability to PTP. Furthermore, psychological factors may lead to the development of PTP by modulating the descending pain inhibitory system. Altogether, homozygous C-allele carriers of the rs216009 SNP were more likely to be vulnerable to PTP, possibly through the regulation of intracellular Ca<sup>2+</sup> levels and affective pain systems, such as those that mediate fear memory recall.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5c/15/10.1177_17448069231193383.PMC10437699.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10102057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silent synapses in pain-related anterior cingulate cortex. 与疼痛相关的前扣带皮层中的沉默突触。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069231179011
Min Zhuo
{"title":"Silent synapses in pain-related anterior cingulate cortex.","authors":"Min Zhuo","doi":"10.1177/17448069231179011","DOIUrl":"https://doi.org/10.1177/17448069231179011","url":null,"abstract":"<p><p>Synaptic plasticity such as Long-term potentiation (LTP) is a key mechanism for learning in central synapses including the cortex. There are two least two major forms of LTPs: presynaptic LTP and postsynaptic LTP. For postsynaptic LTP, the potentiation of AMPA receptor-mediated responses through protein phosphorylation is thought to be a key mechanism. Silent synapses have been reported in the hippocampus, but it is thought to be mainly present in the cortex during early development, and may contribute to maturation of the cortical circuit. However, recent several lines of evidence demonstrate that silent synapses may exist in mature synapses of adult cortex, and they can be recruited by LTP-inducing protocols, as well as chemical-induced LTP. In pain-related cortical regions, silent synapses may not only contribute to cortical excitation after peripheral injury, but also the recruitment of new cortical circuits as well. Thus, it is proposed that silent synapses and modification of functional AMPA receptors and NMDA receptors may play important roles in chronic pain, including phantom pain.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10226042/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9543395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信