Molecular PainPub Date : 2024-01-01DOI: 10.1177/17448069241256466
Li Hu, Erdan An, ZhiPeng Zhu, Ying Cai, Xiaoyan Ye, Hongmei Zhou, Hejia Ge
{"title":"Grape seed-derived procyanidins decreases neuropathic pain and nerve regeneration by suppression of toll-like receptor 4-myeloid differentiation factor-88 signaling.","authors":"Li Hu, Erdan An, ZhiPeng Zhu, Ying Cai, Xiaoyan Ye, Hongmei Zhou, Hejia Ge","doi":"10.1177/17448069241256466","DOIUrl":"10.1177/17448069241256466","url":null,"abstract":"<p><p><b>Background:</b> Recent studies have shown that peripheral nerve regeneration process is closely related to neuropathic pain. Toll-like receptor 4 (TLR4) signaling was involved in different types of pain and nerve regeneration. TLR4 induced the recruitment of myeloid differentiation factor-88 adaptor protein (MyD88) and NF-κB-depended transcriptional process in sensory neurons and glial cells, which produced multiple cytokines and promoted the induction and persistence of pain. Our study aimed to investigate procyanidins's effect on pain and nerve regeneration via TLR4-Myd88 signaling. <b>Methods:</b> Spinal nerve ligation (SNL) model was established to measure the analgesic effect of procyanidins. Anatomical measurement of peripheral nerve regeneration was measured by microscopy and growth associated protein 43 (GAP43) staining. Western blotting and/or immunofluorescent staining were utilized to detect TLR4, myeloid differentiation factor-88 adaptor protein (MyD88), ionized calcium-binding adapter molecule 1 (IBA1) and nuclear factor kappa-B-p65 (NF-κB-p65) expression, as well as the activation of astrocyte and microglia. The antagonist of TLR4 (LPS-RS-Ultra, LRU) were intrathecally administrated to assess the behavioral effects of blocking TLR4 signaling on pain and nerve regeneration. <b>Result:</b> Procyanidins reduced mechanical allodynia, thermal hyperalgesia and significantly suppressed the number of nerve fibers regenerated and the degree of myelination in SNL model. Compared with sham group, TLR4, MyD88, IBA1 and phosphorylation of NF-κB-p65 were upregulated in SNL rats which were reversed by procyanidins administration. Additionally, procyanidins also suppressed activation of spinal astrocytes and glial cells. <b>Conclusion:</b> Suppression of TLR4-MyD88 signaling contributes to the alleviation of neuropathic pain and reduction of nerve regeneration by procyanidins.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11110500/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140876876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular PainPub Date : 2024-01-01DOI: 10.1177/17448069241239231
Chenxia Duan, Yi Zhu, Zhuoliang Zhang, Tiantian Wu, Mengwei Shen, Jinfu Xu, Wenxin Gao, Jianhua Pan, Lei Wei, Huibin Su, Chenghuan Shi
{"title":"Esketamine inhibits the c-Jun N-terminal kinase pathway in the spinal dorsal horn to relieve bone cancer pain in rats.","authors":"Chenxia Duan, Yi Zhu, Zhuoliang Zhang, Tiantian Wu, Mengwei Shen, Jinfu Xu, Wenxin Gao, Jianhua Pan, Lei Wei, Huibin Su, Chenghuan Shi","doi":"10.1177/17448069241239231","DOIUrl":"10.1177/17448069241239231","url":null,"abstract":"<p><p>Cancer-induced bone pain (CIBP) is one of the most common and feared symptoms in patients with advanced tumors. The X-C motif chemokine ligand 12 (CXCL12) and the CXCR4 receptor have been associated with glial cell activation in bone cancer pain. Moreover, mitogen-activated protein kinases (MAPKs), as downstream CXCL12/CXCR4 signals, and c-Jun, as activator protein AP-1 components, contribute to the development of various types of pain. However, the specific CIBP mechanisms remain unknown. Esketamine is a non-selective N-methyl-d-aspartic acid receptor (NMDA) inhibitor commonly used as an analgesic in the clinic, but its analgesic mechanism in bone cancer pain remains unclear. We used a tumor cell implantation (TCI) model and explored that CXCL12/CXCR4, p-MAPKs, and p-c-Jun were stably up-regulated in the spinal cord. Immunofluorescence images showed activated microglia in the spinal cord on day 14 after TCI and co-expression of CXCL12/CXCR4, p-MAPKs (p-JNK, p-ERK, p-p38 MAPK), and p-c-Jun in microglia. Intrathecal injection of the CXCR4 inhibitor AMD3100 reduced JNK and c-Jun phosphorylations, and intrathecal injection of the JNK inhibitor SP600125 and esketamine also alleviated TCI-induced pain and reduced the expression of p-JNK and p-c-Jun in microglia. Overall, our data suggest that the CXCL12/CXCR4-JNK-c-Jun signaling pathway of microglia in the spinal cord mediates neuronal sensitization and pain hypersensitivity in cancer-induced bone pain and that esketamine exerts its analgesic effect by inhibiting the JNK-c-Jun pathway.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10938627/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139990716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular PainPub Date : 2024-01-01DOI: 10.1177/17448069241226960
Ling-Ling Cui, Xi-Xi Wang, Han Liu, Fang Luo, Chen-Hong Li
{"title":"Projections from infralimbic medial prefrontal cortex glutamatergic outputs to amygdala mediates opioid induced hyperalgesia in male rats.","authors":"Ling-Ling Cui, Xi-Xi Wang, Han Liu, Fang Luo, Chen-Hong Li","doi":"10.1177/17448069241226960","DOIUrl":"10.1177/17448069241226960","url":null,"abstract":"<p><p>Repeated use of opioid analgesics may cause a paradoxically exacerbated pain known as opioid-induced hyperalgesia (OIH), which hinders effective clinical intervention for severe pain. Currently, little is known about the neural circuits underlying OIH modulation. Previous studies suggest that laterocapsular division of the central nucleus of amygdala (CeLC) is critically involved in the regulation of OIH. Our purpose is to clarify the role of the projections from infralimbic medial prefrontal cortex (IL) to CeLC in OIH. We first produced an OIH model by repeated fentanyl subcutaneous injection in male rats. Immunofluorescence staining revealed that c-Fos-positive neurons were significantly increased in the right CeLC in OIH rats than the saline controls. Then, we used calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) labeling and the patch-clamp recordings with ex vivo optogenetics to detect the functional projections from glutamate pyramidal neurons in IL to the CeLC. The synaptic transmission from IL to CeLC, shown in the excitatory postsynaptic currents (eEPSCs), inhibitory postsynaptic currents (eIPSCs) and paired-pulse ratio (PPR), was observably enhanced after fentanyl administration. Moreover, optogenetic activation of this IL-CeLC pathway decreased c-Fos expression in CeLC and ameliorated mechanical and thermal pain in OIH. On the contrary, silencing this pathway by chemogenetics exacerbated OIH by activating the CeLC. Combined with the electrophysiology results, the enhanced synaptic transmission from IL to CeLC might be a cortical gain of IL to relieve OIH rather than a reason for OIH generation. Scaling up IL outputs to CeLC may be an effective neuromodulation strategy to treat OIH.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851759/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139087633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular PainPub Date : 2024-01-01DOI: 10.1177/17448069241272149
Shi-Yu Sun, Xi Yin, Jun-Yi Ma, Xue-Long Wang, Xue-Mei Xu, Jing-Ni Wu, Cheng-Wei Zhang, Ying Lu, Tong Liu, Li Zhang, Pei-Pei Kang, Bin Wu, Guo-Kun Zhou
{"title":"Histamine H4 receptor and TRPV1 mediate itch induced by cadaverine, a metabolite of the microbiome.","authors":"Shi-Yu Sun, Xi Yin, Jun-Yi Ma, Xue-Long Wang, Xue-Mei Xu, Jing-Ni Wu, Cheng-Wei Zhang, Ying Lu, Tong Liu, Li Zhang, Pei-Pei Kang, Bin Wu, Guo-Kun Zhou","doi":"10.1177/17448069241272149","DOIUrl":"10.1177/17448069241272149","url":null,"abstract":"<p><p>Cadaverine is an endogenous metabolite produced by the gut microbiome with various activity in physiological and pathological conditions. However, whether cadaverine regulates pain or itch remains unclear. In this study, we first found that cadaverine may bind to histamine 4 receptor (H4R) with higher docking energy score using molecular docking simulations, suggesting cadaverine may act as an endogenous ligand for H4R. We subsequently found intradermal injection of cadaverine into the nape or cheek of mice induces a dose-dependent scratching response in mice, which was suppressed by a selective H4R antagonist JNJ-7777120, transient receptor potential vanilloid 1 (TRPV1) antagonist capsazepine and PLC inhibitor U73122, but not H1R antagonist or TRPA1 antagonist or TRPV4 antagonist. Consistently, cadaverine-induced itch was abolished in <i>Trpv1</i><sup><i>-/-</i></sup> but not <i>Trpa1</i><sup><i>-/-</i></sup> mice. Pharmacological analysis indicated that mast cells and opioid receptors were also involved in cadaverine-induced itch in mice. scRNA-Seq data analysis showed that H4R and TRPV1 are mainly co-expressed on NP2, NP3 and PEP1 DRG neurons. Calcium imaging analysis showed that cadaverine perfusion enhanced calcium influx in the dissociated dorsal root ganglion (DRG) neurons, which was suppressed by JNJ-7777120 and capsazepine, as well as in the DRG neurons from <i>Trpv1</i><sup><i>-/-</i></sup> mice. Patch-clamp recordings found that cadaverine perfusion significantly increased the excitability of small diameter DRG neurons, and JNJ-7777120 abolished this effect, indicating involvement of H4R. Together, these results provide evidences that cadaverine is a novel endogenous pruritogens, which activates H4R/TRPV1 signaling pathways in the primary sensory neurons.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301752/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular PainPub Date : 2024-01-01DOI: 10.1177/17448069241289961
Zirui Li, Haicheng Chen, Chujie Chen
{"title":"Pain sensitivity genes as therapeutic targets in knee osteoarthritis: A comprehensive analysis.","authors":"Zirui Li, Haicheng Chen, Chujie Chen","doi":"10.1177/17448069241289961","DOIUrl":"10.1177/17448069241289961","url":null,"abstract":"<p><p>Pain sensitivity is a significant factor in knee osteoarthritis (KOA), influencing patient outcomes and complicating treatment. Genetic differences, particularly in pain-sensing genes (PSRGs), are known to contribute to the variability in pain experiences among KOA patients. This study aims to systematically analyze PSRGs in KOA to better understand their role and potential as therapeutic targets. We utilized bulk RNA-seq data from the GSE114007 and GSE169077 datasets to identify differentially expressed genes, with 20 genes found to be significantly altered. Key PSRGs, including PENK, NGF, HOXD1, and TRPA1, were identified using LASSO, SVM, and random forest algorithms. Further, KEGG and GO enrichment analyses revealed pathways such as \"Neuroactive ligand-receptor interaction\" and \"ECM-receptor interaction,\" which were validated through external datasets. Single-cell RNA-seq analysis from GSE152805, GSE133449, and GSE104782 datasets demonstrated the heterogeneity and dynamic expression of PSRGs across different cell subpopulations in synovium, meniscus, and cartilage samples. UMAP and pseudotime analyses were used to visualize spatial distribution and developmental trajectories of these genes. The findings emphasize the critical roles of PSRGs in KOA, highlighting their potential as therapeutic targets and suggesting that integrating genetic information into clinical practice could significantly improve pain management and treatment strategies for KOA.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456193/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142308166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular PainPub Date : 2024-01-01DOI: 10.1177/17448069241276378
M Danilo Boada, Silvia Gutierrez
{"title":"Mechanical and cold polymodality coexist in tactile peripheral afferents, and it's not mediated by TRPM8.","authors":"M Danilo Boada, Silvia Gutierrez","doi":"10.1177/17448069241276378","DOIUrl":"10.1177/17448069241276378","url":null,"abstract":"<p><p>In the mammalian somatosensory system, polymodality is defined as the competence of some neurons to respond to multiple forms of energy (e.g., mechanical and thermal). This ability is thought to be an exclusive property of nociceptive neurons (polymodal C-fiber nociceptors) and one of the pillars of nociceptive peripheral plasticity. The current study uncovered a completely different neuronal sub-population with polymodal capabilities on the opposite mechanical modality spectrum (tactile). We have observed that several tactile afferents (1/5) can respond to cold in non-nociceptive ranges. These cells' mechanical thresholds and electrical properties are similar to any low-threshold mechano-receptors (LT), conducting in a broad range of velocities (Aδ to Aβ), lacking CGRP and TRPM8 receptors. Due to its density, cold-response range, speed, and response to injury (or lack thereof), we speculate on its role in controlling reflexive behaviors (wound liking and rubbing) and modulation of nociceptive spinal cord integration. Further studies are required to understand the mechanisms behind this neuron's polymodality, central architecture, and impact on pain perception.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367603/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular PainPub Date : 2024-01-01DOI: 10.1177/17448069241227922
Eugen V Khomula, Dionéia Araldi, Paul G Green, Jon D Levine
{"title":"Sensitization of human and rat nociceptors by low dose morphine is toll-like receptor 4-dependent.","authors":"Eugen V Khomula, Dionéia Araldi, Paul G Green, Jon D Levine","doi":"10.1177/17448069241227922","DOIUrl":"10.1177/17448069241227922","url":null,"abstract":"<p><p>While opioids remain amongst the most effective treatments for moderate-to-severe pain, their substantial side effect profile remains a major limitation to broader clinical use. One such side effect is opioid-induced hyperalgesia (OIH), which includes a transition from opioid-induced analgesia to pain enhancement. Evidence in rodents supports the suggestion that OIH may be produced by the action of opioids at Toll-like Receptor 4 (TLR4) either on immune cells that, in turn, produce pronociceptive mediators to act on nociceptors, or by a direct action at nociceptor TLR4. And, sub-analgesic doses of several opioids have been shown to induce hyperalgesia in rodents by their action as TLR4 agonists. In the present in vitro patch-clamp electrophysiology experiments, we demonstrate that low dose morphine directly sensitizes human as well as rodent dorsal root ganglion (DRG) neurons, an effect of this opioid analgesic that is antagonized by LPS-RS Ultrapure, a selective TLR4 antagonist. We found that low concentration (100 nM) of morphine reduced rheobase in human (by 36%) and rat (by 26%) putative C-type nociceptors, an effect of morphine that was markedly attenuated by preincubation with LPS-RS Ultrapure. Our findings support the suggestion that in humans, as in rodents, OIH is mediated by the direct action of opioids at TLR4 on nociceptors.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851754/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139403720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular PainPub Date : 2024-01-01DOI: 10.1177/17448069241245420
Xuan Zhou, Hiroki Iida, Yuqiang Li, Akinobu Ota, Lisheng Zhuo, Reiko Nobuhara, Yuki Terajima, Mitsuru Naiki, A Hari Reddi, Koji Kimata, Takahiro Ushida
{"title":"Neurotropin<sup>®</sup> ameliorates chronic pain associated with scar formation in a mouse model: A gene expression analysis of the inflammatory response.","authors":"Xuan Zhou, Hiroki Iida, Yuqiang Li, Akinobu Ota, Lisheng Zhuo, Reiko Nobuhara, Yuki Terajima, Mitsuru Naiki, A Hari Reddi, Koji Kimata, Takahiro Ushida","doi":"10.1177/17448069241245420","DOIUrl":"10.1177/17448069241245420","url":null,"abstract":"<p><p><i>Background</i>: Scar formation after trauma and surgery involves an inflammatory response and can lead to the development of chronic pain. Neurotropin<sup><b>®</b></sup> (NTP) is a nonprotein extract of inflamed skin of rabbits inoculated with vaccinia virus. It has been widely used for the treatment of chronic pain. However, the in vivo effects of NTP on painful scar formation have not been determined. To investigate the molecular mechanisms underlying the effects of NTP on the inflammatory response, we evaluated gene expression in the scar tissues and dorsal root ganglions (DRGs) of mice administered NTP and control mice. <i>Methods and results</i>: Mice injected with saline or NTP were used as controls; other mice were subjected to surgery on the left hind paw to induce painful scar formation, and then injected with saline or NTP. Hind paw pain was evaluated by measuring the threshold for mechanical stimulation using the von Frey test. The paw withdrawal threshold gradually returned to pre-operative levels over 4 weeks post-operation; NTP-treated mice showed a significantly shortened recovery time of approximately 3 weeks, suggesting that NTP exerted an analgesic effect in this mouse model. Total RNA was extracted from the scarred hind paw tissues and DRGs were collected 1 week post-operation for a microarray analysis. Gene set enrichment analysis revealed that the expression of some gene sets related to inflammatory responses was activated or inhibited following surgery and NTP administration. Quantitative real-time reverse transcription-polymerase chain reaction analysis results for several genes were consistent with the microarray results. <i>Conclusion</i>: The administration of NTP to the hind paws of mice with painful scar formation following surgery diminished nociceptive pain and reduced the inflammatory response. NTP inhibited the expression of some genes involved in the response to surgery-induced inflammation. Therefore, NTP is a potential therapeutic option for painful scar associated with chronic pain.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11080750/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140175604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electroacupuncture improves allodynia and central sensitization via modulation of microglial activation associated P2X4R and inflammation in a rat model of migraine.","authors":"Min Zhou, Fang Pang, Dongmei Liao, Yunhao Yang, Ying Wang, Zhuxin Yang, Xinlu He, Chenglin Tang","doi":"10.1177/17448069241258113","DOIUrl":"10.1177/17448069241258113","url":null,"abstract":"<p><p><b>Background:</b> Recent studies have demonstrated that activated microglia were involved in the pathogenesis of central sensitization characterized by cutaneous allodynia in migraine. Activation of microglia is accompanied by increased expression of its receptors and release of inflammatory mediators. Acupuncture and its developed electroacupuncture (EA) have been recommended as an alternative therapy for migraine and are widely used for relieving migraine-associated pain. However, it remains rare studies that show whether EA exerts anti-migraine effects via inhibiting microglial activation related to a release of microglial receptors and the inflammatory pathway. Therefore, this study aimed to investigate EA' ability to ameliorate central sensitization via modulation of microglial activation, microglial receptor, and inflammatory response using a rat model of migraine induced by repeated epidural chemical stimulation. <b>Methods:</b> In the present study, a rat model of migraine was established by epidural repeated inflammatory soup (IS) stimulation and treated with EA at Fengchi (GB20) and Yanglingquan (GB34) and acupuncture at sham-acupoints. Pain hypersensitivity was further determined by measuring the mechanical withdrawal threshold using the von-Frey filament. The changes in c-Fos and ionized calcium binding adaptor molecule 1 (Ibal-1) labeled microglia in the trigeminal nucleus caudalis (TNC) were examined by immunflurescence to assess the central sensitization and whether accompanied with microglia activation. In addition, the expression of Ibal-1, microglial purinoceptor P2X4, and its associated inflammatory signaling pathway mediators, including interleukin (IL)-1β, NOD-like receptor protein 3 (NLRP3), and Caspase-1 in the TNC were investigated by western blot and real-time polymerase chain reaction analysis. <b>Results:</b> Allodynia increased of c-Fos, and activated microglia were observed after repeated IS stimulation. EA alleviated the decrease in mechanical withdrawal thresholds, reduced the activation of c-Fos and microglia labeled with Ibal-1, downregulated the level of microglial purinoceptor P2X4, and limited the inflammatory response (NLRP3/Caspase-1/IL-1β signaling pathway) in the TNC of migraine rat model. <b>Conclusions:</b> Our results indicate that the anti-hyperalgesia effects of EA ameliorate central sensitization in IS-induced migraine by regulating microglial activation related to P2X4R and NLRP3/IL-1β inflammatory pathway.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143845/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140922867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular PainPub Date : 2024-01-01DOI: 10.1177/17448069241261687
Saurav Gupta, Jennifer Ling, Jianguo G Gu
{"title":"Assessment of orofacial nociceptive behaviors of mice with the sheltering tube method: Oxaliplatin-induced mechanical and cold allodynia in orofacial regions.","authors":"Saurav Gupta, Jennifer Ling, Jianguo G Gu","doi":"10.1177/17448069241261687","DOIUrl":"10.1177/17448069241261687","url":null,"abstract":"<p><p>Preclinical studies on pathological pain rely on the von Frey test to examine changes in mechanical thresholds and the acetone spray test to determine alterations in cold sensitivity in rodents. These tests are typically conducted on rodent hindpaws, where animals with pathological pain show reliable nocifensive responses to von Frey filaments and acetone drops applied to the hindpaws. Pathological pain in orofacial regions is also an important clinical problem and has been investigated with rodents. However, performing the von Frey and acetone spray tests in the orofacial region has been challenging, largely due to the high mobility of the head of testing animals. To solve this problem, we implemented a sheltering tube method to assess orofacial nociception in mice. In experiments, mice were sheltered in elevated tubes, where they were well accommodated because the tubes provided safe shelters for mice. Examiners could reliably apply mechanical stimuli with von Frey filament, cold stimuli with acetone spray, and light stimuli with a laser beam to the orofacial regions. We validated this method in Nav1.8-ChR2 mice treated with oxaliplatin that induced peripheral neuropathy. Using the von Frey test, orofacial response frequencies and nociceptive response scores were significantly increased in Nav1.8-ChR2 mice treated with oxaliplatin. In the acetone spray test, the duration of orofacial responses was significantly prolonged in oxaliplatin-treated mice. The response frequencies to laser light stimulation were significantly increased in Nav1.8-ChR2 mice treated with oxaliplatin. Our sheltering tube method allows us to reliably perform the von Frey, acetone spray, and optogenetic tests in orofacial regions to investigate orofacial pain.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412213/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141179535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}