Molecular Pain最新文献

筛选
英文 中文
Curcumin relieves CFA-induced inflammatory pain by inhibiting the AP-1/c-Jun-CCL2-CCR2 pathway in the spinal dorsal horn. EXPRESS:姜黄素通过抑制脊髓背角AP-1/c-Jun-CCL2-CCR2通路缓解cfa诱导的炎性疼痛。
IF 2.8 3区 医学
Molecular Pain Pub Date : 2025-01-01 DOI: 10.1177/17448069251323668
Yi Zhu, Yinhong Jiang, Xinyu Lu, Siyu Li, Fujiaying Liu, Yidan Xu, Yue Tian, Liangliang Gao, Lei Wei
{"title":"Curcumin relieves CFA-induced inflammatory pain by inhibiting the AP-1/c-Jun-CCL2-CCR2 pathway in the spinal dorsal horn.","authors":"Yi Zhu, Yinhong Jiang, Xinyu Lu, Siyu Li, Fujiaying Liu, Yidan Xu, Yue Tian, Liangliang Gao, Lei Wei","doi":"10.1177/17448069251323668","DOIUrl":"10.1177/17448069251323668","url":null,"abstract":"<p><p>Inflammatory pain is a pervasive clinical issue that severely diminishes individuals' quality of life. AP-1 (Activating protein-1) is a transcription factor composed of Jun and Fos proteins. Upregulation of AP-1/c-Jun activity is observed in a variety of diseases, particularly in inflammatory conditions. The CCL2 (C-C Motif Chemokine Ligand 2)/CCR2 (C-C Chemokine Receptor 2) axis plays a crucial role in regulating both peripheral and central inflammation. Curcumin, a natural compound derived from the roots of turmeric, possesses anti-inflammatory, antioxidant, and analgesic properties, making it effective for treating various disorders. However, the effects of curcumin on inflammatory pain and its potential mechanisms of action remain unclear. In this study, we utilized a CFA (Complete Freund's Adjuvant)-induced inflammatory pain model to investigate the effects of curcumin. We found that curcumin effectively reduced CFA-induced mechanical allodynia when administered via intrathecal injection. Behavioral assessments were performed using the Von Frey test. Western blot analysis was performed to detect variations in molecular expression, while immunofluorescence was employed to ascertain cellular localization. Intrathecal injection of the AP-1/c-Jun inhibitor T-5224, along with curcumin, resulted in a reduction in the levels of c-Jun, p-c-Jun, CCL2, and CCR2. Additionally, intrathecal injection of the CCR2 antagonist RS504393 also reduced the expression of CCL2 and CCR2. In summary, curcumin plays a significant role in analgesia within the CFA-induced inflammatory pain model. CCL2/CCR2 acts as a downstream mediator of AP-1/c-Jun. Curcumin can suppress the expression of AP-1/c-Jun, thereby inhibiting the expression of CCL2 and CCR2 in the spinal dorsal horn and contributing to the treatment of inflammatory pain.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069251323668"},"PeriodicalIF":2.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11869292/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143414630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TLR3 mediates central sensitization in a chronic migraine model induced by repeated nitroglycerin through the ERK signaling pathway. EXPRESS: TLR3通过ERK信号通路介导反复硝酸甘油诱导的慢性偏头痛模型的中枢致敏。
IF 2.8 3区 医学
Molecular Pain Pub Date : 2025-01-01 Epub Date: 2025-05-23 DOI: 10.1177/17448069251346373
Bin Yang, Zhaoming Ge
{"title":"TLR3 mediates central sensitization in a chronic migraine model induced by repeated nitroglycerin through the ERK signaling pathway.","authors":"Bin Yang, Zhaoming Ge","doi":"10.1177/17448069251346373","DOIUrl":"10.1177/17448069251346373","url":null,"abstract":"<p><strong>Background: </strong>Studies have demonstrated that Toll-like receptor 3 (TLR3) plays a crucial role in neuropathic pain. However, there have been no relevant reports regarding the role of TLR3 in migraine chronification. This study aims to investigate the molecular mechanisms of TLR3 in the central sensitization of chronic migraine (CM).</p><p><strong>Methods: </strong>C57BL/6 male mice were used as models for chronic migraine (CM) disease, receiving an intraperitoneal injection of nitroglycerin (NTG) every other day. Calibrated von Frey filaments were employed to measure the pain threshold in the hind paw sole and periorbital region, enabling the assessment of mechanical allodynia. Western blot was employed to detect the expression changes of TLR3, TRAF6, TAK1, c-Fos, calcitonin gene-related peptide (CGRP), and the extracellular signal-regulated kinase (ERK) signaling pathway. Immunofluorescence was used to detect the cellular localization of TLR3 and the expression changes of central sensitization-related indicators, such as c-Fos and CGRP. In addition, we investigated the effects of TLR3 inhibitor (CU CPT4a), MEK inhibitor(PD98059), TRAF6 inhibitor(C25-140), and TAK1 inhibitor (Takinib) on chronic migraine-like behavior, and activation of the ERK pathway in the Trigeminal nucleus caudalis (TNC).</p><p><strong>Results: </strong>Recurrent injections of NTG resulted in a significant increase in the expression of TLR3, TRAF6, TAK1, CGRP, and c-Fos proteins, as well as the activation of the ERK signaling pathway. Concurrent inhibition of TLR3 function, TRAF6, TAK1, and the ERK pathway counteracted these changes and alleviated hyperalgesia in CM mice.</p><p><strong>Conclusions: </strong>Our findings suggest that TLR3 may play a role in central sensitization in CM mice by TRAF6-TAK1 axis modulating the ERK signaling pathway.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069251346373"},"PeriodicalIF":2.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12185963/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144128263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upregulation of the neuropeptide receptor calcitonin receptor-like in the spinal cord via MLL2 in a mouse model of paclitaxel-induced peripheral neuropathy. 在紫杉醇诱导的周围神经病变小鼠模型中,通过MLL2上调脊髓神经肽受体降钙素受体样。
IF 2.8 3区 医学
Molecular Pain Pub Date : 2025-01-01 DOI: 10.1177/17448069251314857
Salvador Sierra, Sara M Herz, Doan On, Mikhail G Dozmorov, M Imad Damaj, Javier Gonzalez-Maeso
{"title":"Upregulation of the neuropeptide receptor calcitonin receptor-like in the spinal cord via MLL2 in a mouse model of paclitaxel-induced peripheral neuropathy.","authors":"Salvador Sierra, Sara M Herz, Doan On, Mikhail G Dozmorov, M Imad Damaj, Javier Gonzalez-Maeso","doi":"10.1177/17448069251314857","DOIUrl":"10.1177/17448069251314857","url":null,"abstract":"<p><p>Chemotherapy-induced peripheral neuropathy (CIPN) is a prevalent and severe side effect affecting cancer patients undergoing paclitaxel treatment. Growing evidence underscores the pivotal role of calcitonin-related peptide (CGRP) in the development of CIPN. Repeated administration of paclitaxel induces alterations in CGRP release from sensory neurons within the dorsal root ganglia (DRG). The density of the CGRP receptor is most prominent in the dorsal horn of the spinal cord, where it overlaps with the distribution of CGRP. However, the impact of chemotherapy treatment on expression of the CGRP receptor in the spinal cord remains unclear, as well as the potential therapeutic benefits of a CGRP receptor antagonist in an animal model of CIPN. Using a mouse model of paclitaxel-induced mechanical hypersensitivity, we show upregulation of <i>Calcitonin receptor-like receptor</i> (<i>Calcrl</i>) mRNA expression in the spinal cord, an event that occurred in association with upregulation of the H3K4 methyltransferase <i>MLL2</i>. This effect of repeated paclitaxel administration was also linked to an increase in the recruitment of MLL2, thereby enhancing levels of the active mark H3K4me2 at the <i>Calcrl</i> promoter. Furthermore, administration of the CGRP receptor antagonist BIBN4096 mitigated mechanical and cold hypersensitivity in paclitaxel-treated mice. Together, these observations suggest the CGRP receptor in the spinal cord as a potential target for reducing paclitaxel-induced neuropathic pain in animal models.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":"21 ","pages":"17448069251314857"},"PeriodicalIF":2.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11795615/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upregulation of LRRC8A in the anterior cingulate cortex mediates chronic visceral pain in adult male mice with neonatal maternal deprivation. 表达:前扣带皮层LRRC8A的上调介导了新生儿母体剥夺成年雄性小鼠的慢性内脏疼痛。
IF 2.8 3区 医学
Molecular Pain Pub Date : 2025-01-01 Epub Date: 2025-02-17 DOI: 10.1177/17448069251324645
Jin-Nan Lu, Jing-Heng Dou, Zi-Long Yi, Lian Lian, Xing-Lei Ben, Fu-Chao Zhang, Guang-Yin Xu
{"title":"Upregulation of LRRC8A in the anterior cingulate cortex mediates chronic visceral pain in adult male mice with neonatal maternal deprivation.","authors":"Jin-Nan Lu, Jing-Heng Dou, Zi-Long Yi, Lian Lian, Xing-Lei Ben, Fu-Chao Zhang, Guang-Yin Xu","doi":"10.1177/17448069251324645","DOIUrl":"10.1177/17448069251324645","url":null,"abstract":"<p><p>Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder primarily characterized by chronic visceral pain. Studies have reported that the anterior cingulate cortex (ACC) is involved in chronic visceral pain, however, the molecular mechanisms underlying this involvement remain largely unclear. In this study, we aimed to investigate the molecular mechanisms of the ACC in chronic visceral pain induced by neonatal maternal deprivation (NMD) in male mice. We showed that the expression of leucine-rich repeat-containing protein family member 8A (LRRC8A) at both mRNA and protein levels was significantly upregulated in the ACC of NMD male mice, with LRRC8A primarily co-localized in neurons. DCPIB, an inhibitor of LRRC8A, greatly alleviated chronic visceral pain. Moreover, the ATP concentration was significantly upregulated in the ACC of NMD male mice. However, LRRC8A was not involved in somatic pain induced by complete Freund's adjuvant (CFA) injection into the hind paw. In conclusion, our findings demonstrate that LRRC8A plays a critical role in regulating chronic visceral pain in NMD mice. These findings are expected to provide new ideas for the treatment of chronic visceral pain in IBS patients.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069251324645"},"PeriodicalIF":2.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11894642/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143440958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calcium channels in anesthesia management: A molecular and clinical review. 钙通道在麻醉管理中的应用:分子和临床综述。
IF 2.8 3区 医学
Molecular Pain Pub Date : 2025-01-01 Epub Date: 2025-05-10 DOI: 10.1177/17448069251343417
Mostafa Saberian, Afzal Shamsi, Mahdieh Mehrab Mohseni, Ashkan Taghizadehimani, Elham Shahidi Delshad
{"title":"Calcium channels in anesthesia management: A molecular and clinical review.","authors":"Mostafa Saberian, Afzal Shamsi, Mahdieh Mehrab Mohseni, Ashkan Taghizadehimani, Elham Shahidi Delshad","doi":"10.1177/17448069251343417","DOIUrl":"10.1177/17448069251343417","url":null,"abstract":"<p><p>Calcium channels play an essential role in the molecular and physiological mechanisms underlying anesthesia by mediating intracellular calcium ion (Ca<sup>2+</sup>) flux, which regulates key processes such as neurotransmitter release, neuronal excitability, and immune responses. Voltage-gated calcium channels (VGCCs) and ligand-gated calcium channels (LGCCs) are integral to the anesthetic process, with subtypes such as T-type VGCCs and NMDA receptors influencing consciousness and pain perception. This review emphasizes current evidence to highlight how anesthetic agents interact with calcium channels via direct inhibition and modulation of intracellular signaling pathways, such as phosphatidylinositol metabolism. Additionally, calcium channelopathies - genetic or acquired dysfunctions affecting VGCCs and LGCCs - pose challenges in anesthetic management, including arrhythmias, malignant hyperthermia, and altered anesthetic sensitivity. These findings underscore the critical need for precision medicine approaches tailored to patients with these conditions. While significant progress has been made in understanding the roles of calcium channels in anesthesia, knowledge gaps remain regarding the long-term implications of anesthetic interactions on calcium signaling and clinical outcomes. This review bridges foundational science with clinical practice, emphasizing the translational potential of calcium channel research for optimizing anesthetic strategies. By integrating molecular insights with emerging pharmacogenomic approaches, it provides a pathway for developing safer and more effective anesthesia protocols that enhance patient outcomes.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069251343417"},"PeriodicalIF":2.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12163254/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143973050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of pain in lumbosacral stenosis and lifestyle-related factors on brain-derived neurotrophic factor expression profiles. 腰骶管狭窄疼痛及生活方式相关因素对脑源性神经营养因子表达谱的影响。
IF 2.8 3区 医学
Molecular Pain Pub Date : 2025-01-01 DOI: 10.1177/17448069241309001
Dawid Sobański, Rafał Staszkiewicz, Małgorzata Sobańska, Damian Strojny, Beniamin Oskar Grabarek
{"title":"Effects of pain in lumbosacral stenosis and lifestyle-related factors on brain-derived neurotrophic factor expression profiles.","authors":"Dawid Sobański, Rafał Staszkiewicz, Małgorzata Sobańska, Damian Strojny, Beniamin Oskar Grabarek","doi":"10.1177/17448069241309001","DOIUrl":"https://doi.org/10.1177/17448069241309001","url":null,"abstract":"<p><p>This study investigated the role of brain-derived neurotrophic factor (BDNF) in patients with degenerative lumbar stenosis, focusing on its expression and correlation with pain intensity. The study examined 96 patients with lumbar stenosis and 85 control participants. BDNF levels in the yellow ligamentum flavum were measured using reverse transcription quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), and western blot analysis. The results showed significantly higher BDNF expression at both messenger ribonucleic acid (mRNA; fold change = +1.35 ± 0.23; <i>p</i> < 0.05) and protein levels in patients (28.98 ± 6.40 pg/mg) compared to controls (4.56 ± 1.98 pg/mg; <i>p</i> < 0.05). Furthermore, BDNF levels correlated positively with pain intensity reported by patients, with higher expression observed in those experiencing more severe pain. The study also explored the influence of lifestyle factors, such as smoking and alcohol consumption, and related diseases, such as diabetes, on BDNF expression. Smoking, alcohol use, and diabetes were associated with significantly elevated BDNF levels (<i>p</i> < 0.05). These findings suggest that BDNF could serve as a biomarker for pain severity in degenerative lumbar stenosis at the protein level, although this was not consistently observed at the mRNA level; this highlights the potential for BDNF-targeted therapies in managing pain. Future research should involve larger longitudinal studies to validate these findings and explore therapeutic interventions. This study underscores the importance of considering molecular and lifestyle factors in the treatment of degenerative lumbar stenosis, aiming to improve patient outcomes through comprehensive, targeted approaches.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":"21 ","pages":"17448069241309001"},"PeriodicalIF":2.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11705318/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142951975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial dysfunction in trigeminal ganglion contributes to nociceptive behavior in a nitroglycerin-induced migraine mouse model. 在硝酸甘油诱导的偏头痛小鼠模型中,三叉神经节线粒体功能障碍有助于伤害性行为。
IF 2.8 3区 医学
Molecular Pain Pub Date : 2025-01-01 Epub Date: 2025-03-20 DOI: 10.1177/17448069251332100
Xin-Ying Guan, Xin Dong, Yi-Xuan Wang, Bing-Chao Xu, Xiao-Bo Wu
{"title":"Mitochondrial dysfunction in trigeminal ganglion contributes to nociceptive behavior in a nitroglycerin-induced migraine mouse model.","authors":"Xin-Ying Guan, Xin Dong, Yi-Xuan Wang, Bing-Chao Xu, Xiao-Bo Wu","doi":"10.1177/17448069251332100","DOIUrl":"10.1177/17448069251332100","url":null,"abstract":"<p><p>Migraine is a chronic episodic neurological disorder. However, its diagnosis and management remain unclear. The pathogenesis of migraine is intricately linked to the dysfunction of mitochondria and aberrant trigeminal neuronal activity. Here, we established a murine migraine model via intraperitoneal administration of nitroglycerin (NTG) to examine alterations in mitochondria-associated proteins and calcium signaling patterns within trigeminal neurons, while also investigating the underlying mechanisms. NTG-treated mice exhibited marked periorbital allodynia, decreased crossing of the central area, and decreased time spent in the central area in the open field test compared to Veh treated animals. Furthermore, increased calcium signaling in response to adenosine triphosphate (ATP) stimulation was observed in the trigeminal ganglion (TG) of mice with migraine. Meanwhile, mRNA levels of genes including nuclear respiratory factor-1 (<i>Nrf1)</i>, nuclear respiratory factor-2 (<i>Nrf2)</i> and peroxisome proliferator-activated receptor gamma coactivator 1-alpha <i>(Pgc-1)</i> were decreased in the TG. Pharmacological regulation of the mitochondrial function affected NTG-induced migraine chronic pain symptoms. TG mitochondria dysfunctions is implicated in the regulation of mechanical hyperalgesia through the modulation of calcium signaling in an NTG-induced migraine animal model.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069251332100"},"PeriodicalIF":2.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035203/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143664002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Whole-brain input architecture of primary and secondary somatosensory cortices in mice. EXPRESS:小鼠初级和次级体感觉皮质的全脑输入结构。
IF 2.8 3区 医学
Molecular Pain Pub Date : 2025-01-01 Epub Date: 2025-05-10 DOI: 10.1177/17448069251341882
Hailing Yang, Mei Yang, Tonghui Xu
{"title":"Whole-brain input architecture of primary and secondary somatosensory cortices in mice.","authors":"Hailing Yang, Mei Yang, Tonghui Xu","doi":"10.1177/17448069251341882","DOIUrl":"10.1177/17448069251341882","url":null,"abstract":"<p><p>The primary and secondary somatosensory cortices (S1 and S2) play crucial roles in processing sensory inputs from various body regions, encompassing tactile, pressure, thermal, and nociceptive stimuli. These cortices are anatomically distinct, with S1 primarily involved in mechanical and cold stimulus discrimination and S2 in the interpretation of mechanical and thermal inputs, particularly in pain perception. However, the upstream innervation patterns of the somatosensory system remain less explored. In this study, we employed a modified rabies virus (RV)-mediated transsynaptic retrograde tracing system to map and compare the whole-brain input patterns of S1 and S2 in mice. Our results revealed that both S1 and S2 receive inputs from diverse brain regions, including the cortical plate, thalamus, cortical subplate, striatum, and pallidum. Notably, the cortical plate emerged as the primary source of input neurons for both S1 and S2, while the thalamus demonstrated preferential projections to S1. Through quantitative analysis, we identified distinct input distribution patterns across 64 brain subregions, revealing that S1 and S2 exhibit complex internal circuitry, including abundant local projections. Furthermore, we observed notable variations in the proportional contributions of inputs from diverse subregions to S1 and S2. This comprehensive anatomical framework provides new insights into the neural circuits underlying somatosensory perception and modulation, with potential implications for the development of targeted therapeutic strategies for pain and other somatosensory disorders.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069251341882"},"PeriodicalIF":2.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12163265/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144019269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural Adaptation of the Reward System in Primary Dysmenorrhea. 原发性痛经中奖赏系统的神经适应。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2024-09-11 DOI: 10.1177/17448069241286466
Pei-Shan Hsu,Ching-Hsiung Liu,Ching-Ju Yang,Lin-Chien Lee,Wei-Chi Li,Hsiang-Tai Chao,Li-Fen Chen,Jen-Chuen Hsieh
{"title":"Neural Adaptation of the Reward System in Primary Dysmenorrhea.","authors":"Pei-Shan Hsu,Ching-Hsiung Liu,Ching-Ju Yang,Lin-Chien Lee,Wei-Chi Li,Hsiang-Tai Chao,Li-Fen Chen,Jen-Chuen Hsieh","doi":"10.1177/17448069241286466","DOIUrl":"https://doi.org/10.1177/17448069241286466","url":null,"abstract":"Introduction The brain's reward system (RS) reacts differently to pain and its alleviation. This study examined the correlation between RS activity and behavior during both painful and pain-free periods in individuals with primary dysmenorrhea (PDM) to elucidate their adaptive and maladaptive responses throughout the menstrual cycle. Methods Ninety-two individuals with PDM and 90 control participants underwent resting-state functional magnetic resonance imaging (rsfMRI) scans during their menstrual and peri-ovulatory phases. Regional homogeneity (ReHo) and amplitude of low-frequency fluctuation (ALFF) analyses were used to evaluate RS responses. Psychological evaluations were conducted using the McGill Pain Questionnaire and the Pain Catastrophizing Scale. Results ReHo analysis showed higher values in the left putamen and right amygdala of the PDM group during the peri-ovulatory phase compared to the menstrual phase. ALFF analysis revealed lower values in the putamen of the PDM group compared to controls, regardless of phase. ReHo and ALFF values in the putamen, amygdala, and nucleus accumbens were positively correlated with pain scales during menstruation, while ALFF values in the ventral tegmental area inversely correlated with pain intensity. Those with severe PDM (pain intensity ≥ 7) displayed distinct amygdala ALFF patterns between pain and pain-free phases. PDM participants also had lower ReHo values in the left insula during menstruation, with no direct correlation to pain compared to controls. Discussion Our study highlights the pivotal role of the RS in dysmenorrhea management, exhibiting varied responses between menstrual discomfort and non-painful periods among individuals with PDM. During menstruation, the RS triggers mechanisms for pain avoidance and cognitive coping strategies, while it transitions to processing rewards during the peri-ovulatory phase. This demonstrates the flexibility of the RS in adapting to the recurring pain experienced by those with PDM.","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":"59 1","pages":"17448069241286466"},"PeriodicalIF":3.3,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analyzing Substance Levels and Pain Perception in Painless Labor: The Impact of Spinal Epidural Analgesia. 分析无痛分娩中的物质水平和疼痛感觉:脊髓硬膜外镇痛的影响。
IF 2.8 3区 医学
Molecular Pain Pub Date : 2024-07-31 DOI: 10.1177/17448069241273692
Fahmi Agnesha, Eti Nurwening Solikhah, Djayanti Sari, Rianza Ainunnisa
{"title":"Analyzing Substance Levels and Pain Perception in Painless Labor: The Impact of Spinal Epidural Analgesia.","authors":"Fahmi Agnesha, Eti Nurwening Solikhah, Djayanti Sari, Rianza Ainunnisa","doi":"10.1177/17448069241273692","DOIUrl":"https://doi.org/10.1177/17448069241273692","url":null,"abstract":"<p><strong>Background: </strong>Inflammation affects labor by influencing contractions and dilation. Pain, often linked to tissue ischemia, involves mediators like nitric oxide (NO), TNF-α, and substance P (SP). Neuraxial analgesia, including combined spinal epidural analgesia (SEA) with levobupivacaine, is preferred for its effectiveness and minimal side effects in painless labor. Understanding the impact of painless labor techniques on biomolecular processes such as NO, TNF-α, and substance P levels is crucial for improving pain management strategies. This study investigates these effects in parturients undergoing SEA with levobupivacaine, contributing to the development of novel pain medications and enhancing obstetric care.</p><p><strong>Methods: </strong>This experimental study, conducted at a General Hospital in Indonesia, involved 60 expectant mothers in labor or in the third trimester, expected to give birth vaginally at Permata Hati Metro Hospital. Blood serum was used for analysis, and serum NO, TNF-α, and SP levels were assessed using ELISA kit.</p><p><strong>Results: </strong>There's a significant decrease in NO levels before and post-treatment in the SEA group compared to the control group (p < 0.05). However, no significant difference in TNF-α levels was observed between groups before and after treatment (p > 0.05). Additionally, there was no significant difference in SP levels between groups before treatment, but a significant difference was seen after treatment (p < 0.05). SEA significantly reduced labor pain compared to the control group (P < 0.05), with notable improvements in vital signs and APGAR scores, while also shortening labor duration (P < 0.001).</p><p><strong>Conclusion: </strong>In conclusion, SEA with levobupivacaine during painless labor reduces NO levels significantly and shows a trend of decreasing TNF-α and substance P levels, although not statistically significant, with clinical benefits for both patients and babies.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069241273692"},"PeriodicalIF":2.8,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信