Molecular Pain最新文献

筛选
英文 中文
Understanding the kynurenine pathway: A narrative review on its impact across chronic pain conditions. 了解犬尿氨酸途径:关于其对各种慢性疼痛的影响的叙述性综述。
IF 2.8 3区 医学
Molecular Pain Pub Date : 2024-01-01 DOI: 10.1177/17448069241275097
Ebrahim Hazrati, Seyed Parsa Eftekhar, Reza Mosaed, Saeed Shiralizadeh Dini, Mehrshad Namazi
{"title":"Understanding the kynurenine pathway: A narrative review on its impact across chronic pain conditions.","authors":"Ebrahim Hazrati, Seyed Parsa Eftekhar, Reza Mosaed, Saeed Shiralizadeh Dini, Mehrshad Namazi","doi":"10.1177/17448069241275097","DOIUrl":"10.1177/17448069241275097","url":null,"abstract":"<p><p>Chronic pain is a debilitating symptom with a significant negative impact on the quality of life and socioeconomic status, particularly among adults and the elderly. Major Depressive Disorder (MDD) stands out as one of the most important comorbid disorders accompanying chronic pain. The kynurenine pathway serves as the primary route for tryptophan degradation and holds critical significance in various biological processes, including the regulation of neurotransmitters, immune responses, cancer development, metabolism, and inflammation. This review encompasses key research studies related to the kynurenine pathway in the context of headache, neuropathic pain, gastrointestinal disorders, fibromyalgia, chronic fatigue syndrome, and MDD. Various metabolites produced in the kynurenine pathway, such as kynurenic acid and quinolinic acid, exhibit neuroprotective and neurotoxic effects, respectively. Recent studies have highlighted the significant involvement of kynurenine and its metabolites in the pathophysiology of pain. Moreover, pharmacological interventions targeting the regulation of the kynurenine pathway have shown therapeutic promise in pain management. Understanding the underlying mechanisms of this pathway presents an opportunity for developing personalized, innovative, and non-opioid approaches to pain treatment. Therefore, this narrative review explores the role of the kynurenine pathway in various chronic pain disorders and its association with depression and chronic pain.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331475/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protectin D1 ameliorates non-compressive lumbar disc herniation through SIRT1-mediated CGRP signaling. 保护素 D1 通过 SIRT1 介导的 CGRP 信号改善非压迫性腰椎间盘突出症
IF 3.3 3区 医学
Molecular Pain Pub Date : 2024-01-01 DOI: 10.1177/17448069241232349
Yu-Chang Zhu, Yi Zhang, Xiao Gao, Ling-Xing Li, Yu-Ru Tang, Yi-Hao Wang
{"title":"Protectin D1 ameliorates non-compressive lumbar disc herniation through SIRT1-mediated CGRP signaling.","authors":"Yu-Chang Zhu, Yi Zhang, Xiao Gao, Ling-Xing Li, Yu-Ru Tang, Yi-Hao Wang","doi":"10.1177/17448069241232349","DOIUrl":"10.1177/17448069241232349","url":null,"abstract":"<p><p><i>Background</i>. Neuro-inflammatory response promotes the initiation and sustenance of lumbar disc herniation (LDH). Protectin D1 (PD1), as a new type of specialized pro-resolving mediator (SPM), can improve the prognosis of various inflammatory diseases. Recent studies have shown that over representation of calcitonin gene-related peptides (CGRP) may activate nociceptive signaling following nerve injury. Silent information regulator 1 (SIRT1) is ubiquitously expressed in the dorsal horn of the spinal cord and plays a role in the pathogenesis of LDH. In this study, we investigated the analgesic effects of PD1 and elucidated the impact of neurogenic inflammation in the pathogenesis of neuropathic pain induced by non-compressive lumbar disc herniation (NCLDH) in a rat model. <i>Methods</i>. NCLDH models were established by applying protruding autologous nucleus pulposus to the L5 Dorsal root ganglion (DRG). PD1, SIRT1 antagonist or agonist, CGRP or antagonist were administered as daily intrathecal injections for three consecutive days postoperatively. Behavioral tests were conducted to assess mechanical and thermal hyperalgesia. The ipsilateral lumbar (L4-6) segment of the spinal dorsal horn was isolated for further analysis. Alterations in the release of SIRT1 and CGRP were explored using western blot and immunofluorescence. <i>Results</i>. Application of protruded nucleus (NP) materials to the DRG induced mechanical and thermal allodynia symptoms, and deregulated the expression of pro-inflammatory and anti-inflammatory cytokines in rats. Intrathecal delivery of PD1 significantly reversed the NCLDH-induced imbalance in neuro-inflammatory response and alleviated the symptoms of mechanical and thermal hyperalgesia. In addition, NP application to the DGRs resulted the spinal upregulation of CGRP and SIRT1 expression, which was almost restored by intrathecal injection of PD1 in a dose-dependent manner. SIRT1 antagonist or agonist and CGRP or antagonist treatment further confirmed the result. <i>Conclusion</i>. Our findings indicate PD1 has a potent analgesic effect, and can modulate neuro-inflammation by regulating SIRT1-mediated CGRP signaling in NCLDH.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901055/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139576340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on estimating absolute cytosolic Ca2+ concentration in sensory neurons using a single wavelength Ca2+ indicator. 关于使用单波长 Ca2+ 指示剂估算感觉神经元胞质 Ca2+ 绝对浓度的说明。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2024-01-01 DOI: 10.1177/17448069241230420
James P Higham, Ewan St John Smith, David C Bulmer
{"title":"A note on estimating absolute cytosolic Ca<sup>2+</sup> concentration in sensory neurons using a single wavelength Ca<sup>2+</sup> indicator.","authors":"James P Higham, Ewan St John Smith, David C Bulmer","doi":"10.1177/17448069241230420","DOIUrl":"10.1177/17448069241230420","url":null,"abstract":"<p><p>Ca<sup>2+</sup> imaging is frequently used in the investigation of sensory neuronal function and nociception. In vitro imaging of acutely dissociated sensory neurons using membrane-permeant fluorescent Ca<sup>2+</sup> indicators remains the most common approach to study Ca<sup>2+</sup> signalling in sensory neurons. Fluo4 is a popular choice of single-wavelength indicator due to its brightness, high affinity for Ca<sup>2+</sup> and ease of use. However, unlike ratiometric indicators, the emission intensity from single-wavelength indicators can be affected by indicator concentration, optical path length, excitation intensity and detector efficiency. As such, without careful calibration, it can be difficult to draw inferences from differences in the magnitude of Ca<sup>2+</sup> transients recorded using Fluo4. Here, we show that a method scarcely used in sensory neurophysiology - first proposed by Maravall and colleagues (2000) - can provide reliable estimates of absolute cytosolic Ca<sup>2+</sup> concentration ([Ca<sup>2+</sup>]<sub>cyt</sub>) in acutely dissociated sensory neurons using Fluo4. This method is straightforward to implement; is applicable to any high-affinity single-wavelength Ca<sup>2+</sup> indicator with a large dynamic range; and provides estimates of [Ca<sup>2+</sup>]<sub>cyt</sub> in line with other methods, including ratiometric imaging. Use of this method will improve the granularity of sensory neuron Ca<sup>2+</sup> imaging data obtained with Fluo4.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880540/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139913102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nociception related biomolecules in the adult human saliva: A scoping review with additional quantitative focus on cortisol. 成人唾液中与痛觉相关的生物大分子:以皮质醇为额外定量重点的范围研究。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2024-01-01 DOI: 10.1177/17448069241237121
Roxaneh Zarnegar, Angeliki Vounta, Qiuyuan Li, Sara S Ghoreishizadeh
{"title":"Nociception related biomolecules in the adult human saliva: A scoping review with additional quantitative focus on cortisol.","authors":"Roxaneh Zarnegar, Angeliki Vounta, Qiuyuan Li, Sara S Ghoreishizadeh","doi":"10.1177/17448069241237121","DOIUrl":"10.1177/17448069241237121","url":null,"abstract":"<p><p>Nociception related salivary biomolecules can be useful patients who are not able to self-report pain. We present the existing evidence on this topic using the PRISMA-ScR guidelines and a more focused analysis of cortisol change after cold pain induction using the direction of effect analysis combined with risk of bias analysis using ROBINS-I. Five data bases were searched systematically for articles on adults with acute pain secondary to disease, injury, or experimentally induced pain. Forty three articles met the inclusion criteria for the general review and 11 of these were included in the cortisol-cold pain analysis. Salivary melatonin, kallikreins, pro-inflammatory cytokines, soluable TNF-α receptor II, secretory IgA, testosterone, salivary α-amylase (sAA) and, most commonly, cortisol have been studied in relation to acute pain. There is greatest information about cortisol and sAA which both rise after cold pain when compared with other modalities. Where participants have been subjected to both pain and stress, stress is consistently a more reliable predictor of salivary biomarker change than pain. There remain considerable challenges in identifying biomarkers that can be used in clinical practice to guide the measurement of nociception and treatment of pain. Standardization of methodology and researchers' greater awareness of the factors that affect salivary biomolecule concentrations are needed to improve our understanding of this field towards creating a clinically relevant body of evidence.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10916496/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139932074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reduced capsaicin-induced mechanical allodynia and neuronal responses in the dorsal root ganglion in the presence of protein tyrosine phosphatase non-receptor type 6 overexpression. 在 Ptpn6 过表达的情况下,辣椒素诱发的机械痛觉和 DRG 中神经元的反应减弱。
IF 2.8 3区 医学
Molecular Pain Pub Date : 2024-01-01 DOI: 10.1177/17448069241258106
Robin Vroman, Shingo Ishihara, Spencer Fullam, Matthew J Wood, Natalie S Adamczyk, Nolan Lomeli, Fransiska Malfait, Anne-Marie Malfait, Rachel E Miller, Adrienn Markovics
{"title":"Reduced capsaicin-induced mechanical allodynia and neuronal responses in the dorsal root ganglion in the presence of protein tyrosine phosphatase non-receptor type 6 overexpression.","authors":"Robin Vroman, Shingo Ishihara, Spencer Fullam, Matthew J Wood, Natalie S Adamczyk, Nolan Lomeli, Fransiska Malfait, Anne-Marie Malfait, Rachel E Miller, Adrienn Markovics","doi":"10.1177/17448069241258106","DOIUrl":"10.1177/17448069241258106","url":null,"abstract":"<p><p>Transient Receptor Potential Vanilloid 1 (TRPV1) is a nonselective cation channel expressed by pain-sensing neurons and has been an attractive target for the development of drugs to treat pain. Recently, Src homology region two domain-containing phosphatase-1 (SHP-1, encoded by <i>Ptpn6</i>) was shown to dephosphorylate TRPV1 in dorsal root ganglia (DRG) neurons, which was linked with alleviating different pain phenotypes. These previous studies were performed in male rodents only and did not directly investigate the role of SHP-1 in TRPV-1 mediated sensitization. Therefore, our goal was to determine the impact of <i>Ptpn6</i> overexpression on TRPV1-mediated neuronal responses and capsaicin-induced pain behavior in mice of both sexes. Twelve-week-old male and female mice overexpressing <i>Ptpn6</i> (Shp1-Tg) and their wild type (WT) littermates were used. <i>Ptpn6</i> overexpression was confirmed in the DRG of Shp1-Tg mice by RNA in situ hybridization and RT-qPCR. <i>Trpv1</i> and <i>Ptpn6</i> were found to be co-expressed in DRG sensory neurons in both genotypes. Functionally, this overexpression resulted in lower magnitude intracellular calcium responses to 200 nM capsaicin stimulation in DRG cultures from Shp1-Tg mice compared to WTs. <i>In</i> <i>vivo</i>, we tested the effects of <i>Ptpn6</i> overexpression on capsaicin-induced pain through a model of capsaicin footpad injection. While capsaicin injection evoked nocifensive behavior (paw licking) and paw swelling in both genotypes and sexes, only WT mice developed mechanical allodynia after capsaicin injection. We observed similar level of TRPV1 protein expression in the DRG of both genotypes, however, a higher amount of tyrosine phosphorylated TRPV1 was detected in WT DRG. These experiments suggest that, while SHP-1 does not mediate the acute swelling and nocifensive behavior induced by capsaicin, it does mediate a protective effect against capsaicin-induced mechanical allodynia in both sexes. The protective effect of SHP-1 might be mediated by TRPV1 dephosphorylation in capsaicin-sensitive sensory neurons of the DRG.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11273697/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140945634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
rs12411980 single-nucleotide polymorphism related to PRTFDC1 expression is significantly associated with phantom tooth pain. 与 PRTFDC1 表达相关的 rs12411980 单核苷酸多态性与幻齿痛显著相关。
IF 2.8 3区 医学
Molecular Pain Pub Date : 2024-01-01 DOI: 10.1177/17448069241272215
Jun Araida, Seii Ohka, Moe Soeda, Daisuke Nishizawa, Junko Hasegawa, Kyoko Nakayama, Yuko Ebata, Yasukazu Ogai, Ken-Ichi Fukuda, Kazutaka Ikeda
{"title":"rs12411980 single-nucleotide polymorphism related to <i>PRTFDC1</i> expression is significantly associated with phantom tooth pain.","authors":"Jun Araida, Seii Ohka, Moe Soeda, Daisuke Nishizawa, Junko Hasegawa, Kyoko Nakayama, Yuko Ebata, Yasukazu Ogai, Ken-Ichi Fukuda, Kazutaka Ikeda","doi":"10.1177/17448069241272215","DOIUrl":"10.1177/17448069241272215","url":null,"abstract":"<p><p>Phantom tooth pain (PTP) is one type of non-odontogenic neuropathic toothache, which rarely occurs after appropriate pulpectomy or tooth extraction. The cause of PTP is unknown. We investigated pain-related genetic factors that are associated with PTP. Four pain-associated genes, including G protein-coupled receptor 158 (<i>GPR158</i>) and phosphoribosyl transferase domain containing 1 (<i>PRTFDC1</i>), are adjacent to each other on the human genome. Some of these four genes or their genomic region may be related to PTP. We statistically analyzed associations between single-nucleotide polymorphisms (SNPs) in the genomic region and PTP in patients with PTP (PTP group), other orofacial pain (OFP group), and healthy control subjects. We then performed a database search of expression quantitative trait loci (eQTLs). For the seven SNPs that were significantly associated with PTP even after Bonferroni correction, we focused on the rs12411980 tag SNP (<i>p</i> = 9.42 × 10<sup>-4</sup>). Statistical analyses of the PTP group and healthy subject groups (group labels: NOC and TD) revealed that the rate of the GG genotype of the rs12411980 SNP was significantly higher in the PTP group than in the healthy subject groups (PTP group vs. NOC group: <i>p</i> = 2.92 × 10<sup>-4</sup>, PTP group vs. TD group: <i>p</i> = 5.46 × 10<sup>-4</sup>; percentage of GG: 30% in PTP group, 12% in NOC group, 11% in TD group). These results suggest that the GG genotype of the rs12411980 SNP is more susceptible to PTP. The rs2765697 SNP that is in strong linkage disequilibrium with the rs12411980 SNP is an eQTL that is associated with higher <i>PRTFDC1</i> expression in the minor allele homozygotes in the healthy subject groups of the rs2765697 SNP. Thus, <i>PRTFDC1</i> expression similarly increases in the minor allele homozygotes (GG genotype) in the healthy subject groups of the rs12411980 SNP, which would lead to greater susceptibility to PTP.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348367/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Esketamine inhibits the c-Jun N-terminal kinase pathway in the spinal dorsal horn to relieve bone cancer pain in rats. Esketamine抑制脊髓背角的JNK-c-Jun通路,缓解大鼠骨癌疼痛
IF 3.3 3区 医学
Molecular Pain Pub Date : 2024-01-01 DOI: 10.1177/17448069241239231
Chenxia Duan, Yi Zhu, Zhuoliang Zhang, Tiantian Wu, Mengwei Shen, Jinfu Xu, Wenxin Gao, Jianhua Pan, Lei Wei, Huibin Su, Chenghuan Shi
{"title":"Esketamine inhibits the c-Jun N-terminal kinase pathway in the spinal dorsal horn to relieve bone cancer pain in rats.","authors":"Chenxia Duan, Yi Zhu, Zhuoliang Zhang, Tiantian Wu, Mengwei Shen, Jinfu Xu, Wenxin Gao, Jianhua Pan, Lei Wei, Huibin Su, Chenghuan Shi","doi":"10.1177/17448069241239231","DOIUrl":"10.1177/17448069241239231","url":null,"abstract":"<p><p>Cancer-induced bone pain (CIBP) is one of the most common and feared symptoms in patients with advanced tumors. The X-C motif chemokine ligand 12 (CXCL12) and the CXCR4 receptor have been associated with glial cell activation in bone cancer pain. Moreover, mitogen-activated protein kinases (MAPKs), as downstream CXCL12/CXCR4 signals, and c-Jun, as activator protein AP-1 components, contribute to the development of various types of pain. However, the specific CIBP mechanisms remain unknown. Esketamine is a non-selective N-methyl-d-aspartic acid receptor (NMDA) inhibitor commonly used as an analgesic in the clinic, but its analgesic mechanism in bone cancer pain remains unclear. We used a tumor cell implantation (TCI) model and explored that CXCL12/CXCR4, p-MAPKs, and p-c-Jun were stably up-regulated in the spinal cord. Immunofluorescence images showed activated microglia in the spinal cord on day 14 after TCI and co-expression of CXCL12/CXCR4, p-MAPKs (p-JNK, p-ERK, p-p38 MAPK), and p-c-Jun in microglia. Intrathecal injection of the CXCR4 inhibitor AMD3100 reduced JNK and c-Jun phosphorylations, and intrathecal injection of the JNK inhibitor SP600125 and esketamine also alleviated TCI-induced pain and reduced the expression of p-JNK and p-c-Jun in microglia. Overall, our data suggest that the CXCL12/CXCR4-JNK-c-Jun signaling pathway of microglia in the spinal cord mediates neuronal sensitization and pain hypersensitivity in cancer-induced bone pain and that esketamine exerts its analgesic effect by inhibiting the JNK-c-Jun pathway.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10938627/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139990716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Grape seed-derived procyanidins decreases neuropathic pain and nerve regeneration by suppression of toll-like receptor 4-myeloid differentiation factor-88 signaling. 葡萄籽提取的原花青素通过抑制 TLR4-Myd88 信号传导,减轻神经病理性疼痛并促进神经再生
IF 2.8 3区 医学
Molecular Pain Pub Date : 2024-01-01 DOI: 10.1177/17448069241256466
Li Hu, Erdan An, ZhiPeng Zhu, Ying Cai, Xiaoyan Ye, Hongmei Zhou, Hejia Ge
{"title":"Grape seed-derived procyanidins decreases neuropathic pain and nerve regeneration by suppression of toll-like receptor 4-myeloid differentiation factor-88 signaling.","authors":"Li Hu, Erdan An, ZhiPeng Zhu, Ying Cai, Xiaoyan Ye, Hongmei Zhou, Hejia Ge","doi":"10.1177/17448069241256466","DOIUrl":"10.1177/17448069241256466","url":null,"abstract":"<p><p><b>Background:</b> Recent studies have shown that peripheral nerve regeneration process is closely related to neuropathic pain. Toll-like receptor 4 (TLR4) signaling was involved in different types of pain and nerve regeneration. TLR4 induced the recruitment of myeloid differentiation factor-88 adaptor protein (MyD88) and NF-κB-depended transcriptional process in sensory neurons and glial cells, which produced multiple cytokines and promoted the induction and persistence of pain. Our study aimed to investigate procyanidins's effect on pain and nerve regeneration via TLR4-Myd88 signaling. <b>Methods:</b> Spinal nerve ligation (SNL) model was established to measure the analgesic effect of procyanidins. Anatomical measurement of peripheral nerve regeneration was measured by microscopy and growth associated protein 43 (GAP43) staining. Western blotting and/or immunofluorescent staining were utilized to detect TLR4, myeloid differentiation factor-88 adaptor protein (MyD88), ionized calcium-binding adapter molecule 1 (IBA1) and nuclear factor kappa-B-p65 (NF-κB-p65) expression, as well as the activation of astrocyte and microglia. The antagonist of TLR4 (LPS-RS-Ultra, LRU) were intrathecally administrated to assess the behavioral effects of blocking TLR4 signaling on pain and nerve regeneration. <b>Result:</b> Procyanidins reduced mechanical allodynia, thermal hyperalgesia and significantly suppressed the number of nerve fibers regenerated and the degree of myelination in SNL model. Compared with sham group, TLR4, MyD88, IBA1 and phosphorylation of NF-κB-p65 were upregulated in SNL rats which were reversed by procyanidins administration. Additionally, procyanidins also suppressed activation of spinal astrocytes and glial cells. <b>Conclusion:</b> Suppression of TLR4-MyD88 signaling contributes to the alleviation of neuropathic pain and reduction of nerve regeneration by procyanidins.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11110500/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140876876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical and cold polymodality coexist in tactile peripheral afferents, and it's not mediated by TRPM8. 触觉外周传入中同时存在机械和冷多模性,这并不是由 TRPM8 介导的。
IF 2.8 3区 医学
Molecular Pain Pub Date : 2024-01-01 DOI: 10.1177/17448069241276378
M Danilo Boada, Silvia Gutierrez
{"title":"Mechanical and cold polymodality coexist in tactile peripheral afferents, and it's not mediated by TRPM8.","authors":"M Danilo Boada, Silvia Gutierrez","doi":"10.1177/17448069241276378","DOIUrl":"10.1177/17448069241276378","url":null,"abstract":"<p><p>In the mammalian somatosensory system, polymodality is defined as the competence of some neurons to respond to multiple forms of energy (e.g., mechanical and thermal). This ability is thought to be an exclusive property of nociceptive neurons (polymodal C-fiber nociceptors) and one of the pillars of nociceptive peripheral plasticity. The current study uncovered a completely different neuronal sub-population with polymodal capabilities on the opposite mechanical modality spectrum (tactile). We have observed that several tactile afferents (1/5) can respond to cold in non-nociceptive ranges. These cells' mechanical thresholds and electrical properties are similar to any low-threshold mechano-receptors (LT), conducting in a broad range of velocities (Aδ to Aβ), lacking CGRP and TRPM8 receptors. Due to its density, cold-response range, speed, and response to injury (or lack thereof), we speculate on its role in controlling reflexive behaviors (wound liking and rubbing) and modulation of nociceptive spinal cord integration. Further studies are required to understand the mechanisms behind this neuron's polymodality, central architecture, and impact on pain perception.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367603/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Projections from infralimbic medial prefrontal cortex glutamatergic outputs to amygdala mediates opioid induced hyperalgesia in male rats. IL 谷氨酸能输出到杏仁核的投射介导了雄性大鼠阿片诱导的痛觉减退。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2024-01-01 DOI: 10.1177/17448069241226960
Ling-Ling Cui, Xi-Xi Wang, Han Liu, Fang Luo, Chen-Hong Li
{"title":"Projections from infralimbic medial prefrontal cortex glutamatergic outputs to amygdala mediates opioid induced hyperalgesia in male rats.","authors":"Ling-Ling Cui, Xi-Xi Wang, Han Liu, Fang Luo, Chen-Hong Li","doi":"10.1177/17448069241226960","DOIUrl":"10.1177/17448069241226960","url":null,"abstract":"<p><p>Repeated use of opioid analgesics may cause a paradoxically exacerbated pain known as opioid-induced hyperalgesia (OIH), which hinders effective clinical intervention for severe pain. Currently, little is known about the neural circuits underlying OIH modulation. Previous studies suggest that laterocapsular division of the central nucleus of amygdala (CeLC) is critically involved in the regulation of OIH. Our purpose is to clarify the role of the projections from infralimbic medial prefrontal cortex (IL) to CeLC in OIH. We first produced an OIH model by repeated fentanyl subcutaneous injection in male rats. Immunofluorescence staining revealed that c-Fos-positive neurons were significantly increased in the right CeLC in OIH rats than the saline controls. Then, we used calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) labeling and the patch-clamp recordings with ex vivo optogenetics to detect the functional projections from glutamate pyramidal neurons in IL to the CeLC. The synaptic transmission from IL to CeLC, shown in the excitatory postsynaptic currents (eEPSCs), inhibitory postsynaptic currents (eIPSCs) and paired-pulse ratio (PPR), was observably enhanced after fentanyl administration. Moreover, optogenetic activation of this IL-CeLC pathway decreased c-Fos expression in CeLC and ameliorated mechanical and thermal pain in OIH. On the contrary, silencing this pathway by chemogenetics exacerbated OIH by activating the CeLC. Combined with the electrophysiology results, the enhanced synaptic transmission from IL to CeLC might be a cortical gain of IL to relieve OIH rather than a reason for OIH generation. Scaling up IL outputs to CeLC may be an effective neuromodulation strategy to treat OIH.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851759/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139087633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信