Molecular Pain最新文献

筛选
英文 中文
Electroacupuncture improves allodynia and central sensitization via modulation of microglial activation associated P2X4R and inflammation in a rat model of migraine. 在偏头痛大鼠模型中,电针通过调节与 P2X4R 相关的小胶质细胞活化和炎症,改善异感症和中枢敏感性。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2024-01-01 DOI: 10.1177/17448069241258113
Min Zhou, Fang Pang, Dongmei Liao, Yunhao Yang, Ying Wang, Zhuxin Yang, Xinlu He, Chenglin Tang
{"title":"Electroacupuncture improves allodynia and central sensitization via modulation of microglial activation associated P2X4R and inflammation in a rat model of migraine.","authors":"Min Zhou, Fang Pang, Dongmei Liao, Yunhao Yang, Ying Wang, Zhuxin Yang, Xinlu He, Chenglin Tang","doi":"10.1177/17448069241258113","DOIUrl":"10.1177/17448069241258113","url":null,"abstract":"<p><p><b>Background:</b> Recent studies have demonstrated that activated microglia were involved in the pathogenesis of central sensitization characterized by cutaneous allodynia in migraine. Activation of microglia is accompanied by increased expression of its receptors and release of inflammatory mediators. Acupuncture and its developed electroacupuncture (EA) have been recommended as an alternative therapy for migraine and are widely used for relieving migraine-associated pain. However, it remains rare studies that show whether EA exerts anti-migraine effects via inhibiting microglial activation related to a release of microglial receptors and the inflammatory pathway. Therefore, this study aimed to investigate EA' ability to ameliorate central sensitization via modulation of microglial activation, microglial receptor, and inflammatory response using a rat model of migraine induced by repeated epidural chemical stimulation. <b>Methods:</b> In the present study, a rat model of migraine was established by epidural repeated inflammatory soup (IS) stimulation and treated with EA at Fengchi (GB20) and Yanglingquan (GB34) and acupuncture at sham-acupoints. Pain hypersensitivity was further determined by measuring the mechanical withdrawal threshold using the von-Frey filament. The changes in c-Fos and ionized calcium binding adaptor molecule 1 (Ibal-1) labeled microglia in the trigeminal nucleus caudalis (TNC) were examined by immunflurescence to assess the central sensitization and whether accompanied with microglia activation. In addition, the expression of Ibal-1, microglial purinoceptor P2X4, and its associated inflammatory signaling pathway mediators, including interleukin (IL)-1β, NOD-like receptor protein 3 (NLRP3), and Caspase-1 in the TNC were investigated by western blot and real-time polymerase chain reaction analysis. <b>Results:</b> Allodynia increased of c-Fos, and activated microglia were observed after repeated IS stimulation. EA alleviated the decrease in mechanical withdrawal thresholds, reduced the activation of c-Fos and microglia labeled with Ibal-1, downregulated the level of microglial purinoceptor P2X4, and limited the inflammatory response (NLRP3/Caspase-1/IL-1β signaling pathway) in the TNC of migraine rat model. <b>Conclusions:</b> Our results indicate that the anti-hyperalgesia effects of EA ameliorate central sensitization in IS-induced migraine by regulating microglial activation related to P2X4R and NLRP3/IL-1β inflammatory pathway.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069241258113"},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143845/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140922867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of orofacial nociceptive behaviors of mice with the sheltering tube method: Oxaliplatin-induced mechanical and cold allodynia in orofacial regions. 用遮蔽管法评估小鼠的口面部痛觉行为奥沙利铂诱发的口面部机械和冷异感症
IF 2.8 3区 医学
Molecular Pain Pub Date : 2024-01-01 DOI: 10.1177/17448069241261687
Saurav Gupta, Jennifer Ling, Jianguo G Gu
{"title":"Assessment of orofacial nociceptive behaviors of mice with the sheltering tube method: Oxaliplatin-induced mechanical and cold allodynia in orofacial regions.","authors":"Saurav Gupta, Jennifer Ling, Jianguo G Gu","doi":"10.1177/17448069241261687","DOIUrl":"10.1177/17448069241261687","url":null,"abstract":"<p><p>Preclinical studies on pathological pain rely on the von Frey test to examine changes in mechanical thresholds and the acetone spray test to determine alterations in cold sensitivity in rodents. These tests are typically conducted on rodent hindpaws, where animals with pathological pain show reliable nocifensive responses to von Frey filaments and acetone drops applied to the hindpaws. Pathological pain in orofacial regions is also an important clinical problem and has been investigated with rodents. However, performing the von Frey and acetone spray tests in the orofacial region has been challenging, largely due to the high mobility of the head of testing animals. To solve this problem, we implemented a sheltering tube method to assess orofacial nociception in mice. In experiments, mice were sheltered in elevated tubes, where they were well accommodated because the tubes provided safe shelters for mice. Examiners could reliably apply mechanical stimuli with von Frey filament, cold stimuli with acetone spray, and light stimuli with a laser beam to the orofacial regions. We validated this method in Nav1.8-ChR2 mice treated with oxaliplatin that induced peripheral neuropathy. Using the von Frey test, orofacial response frequencies and nociceptive response scores were significantly increased in Nav1.8-ChR2 mice treated with oxaliplatin. In the acetone spray test, the duration of orofacial responses was significantly prolonged in oxaliplatin-treated mice. The response frequencies to laser light stimulation were significantly increased in Nav1.8-ChR2 mice treated with oxaliplatin. Our sheltering tube method allows us to reliably perform the von Frey, acetone spray, and optogenetic tests in orofacial regions to investigate orofacial pain.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069241261687"},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412213/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141179535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurotropin® ameliorates chronic pain associated with scar formation in a mouse model: A gene expression analysis of the inflammatory response. Neurotropin® 可改善小鼠模型中与疤痕形成相关的慢性疼痛:炎症反应的基因表达分析。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2024-01-01 DOI: 10.1177/17448069241245420
Xuan Zhou, Hiroki Iida, Yuqiang Li, Akinobu Ota, Lisheng Zhuo, Reiko Nobuhara, Yuki Terajima, Mitsuru Naiki, A Hari Reddi, Koji Kimata, Takahiro Ushida
{"title":"Neurotropin<sup>®</sup> ameliorates chronic pain associated with scar formation in a mouse model: A gene expression analysis of the inflammatory response.","authors":"Xuan Zhou, Hiroki Iida, Yuqiang Li, Akinobu Ota, Lisheng Zhuo, Reiko Nobuhara, Yuki Terajima, Mitsuru Naiki, A Hari Reddi, Koji Kimata, Takahiro Ushida","doi":"10.1177/17448069241245420","DOIUrl":"10.1177/17448069241245420","url":null,"abstract":"<p><p><i>Background</i>: Scar formation after trauma and surgery involves an inflammatory response and can lead to the development of chronic pain. Neurotropin<sup><b>®</b></sup> (NTP) is a nonprotein extract of inflamed skin of rabbits inoculated with vaccinia virus. It has been widely used for the treatment of chronic pain. However, the in vivo effects of NTP on painful scar formation have not been determined. To investigate the molecular mechanisms underlying the effects of NTP on the inflammatory response, we evaluated gene expression in the scar tissues and dorsal root ganglions (DRGs) of mice administered NTP and control mice. <i>Methods and results</i>: Mice injected with saline or NTP were used as controls; other mice were subjected to surgery on the left hind paw to induce painful scar formation, and then injected with saline or NTP. Hind paw pain was evaluated by measuring the threshold for mechanical stimulation using the von Frey test. The paw withdrawal threshold gradually returned to pre-operative levels over 4 weeks post-operation; NTP-treated mice showed a significantly shortened recovery time of approximately 3 weeks, suggesting that NTP exerted an analgesic effect in this mouse model. Total RNA was extracted from the scarred hind paw tissues and DRGs were collected 1 week post-operation for a microarray analysis. Gene set enrichment analysis revealed that the expression of some gene sets related to inflammatory responses was activated or inhibited following surgery and NTP administration. Quantitative real-time reverse transcription-polymerase chain reaction analysis results for several genes were consistent with the microarray results. <i>Conclusion</i>: The administration of NTP to the hind paws of mice with painful scar formation following surgery diminished nociceptive pain and reduced the inflammatory response. NTP inhibited the expression of some genes involved in the response to surgery-induced inflammation. Therefore, NTP is a potential therapeutic option for painful scar associated with chronic pain.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069241245420"},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11080750/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140175604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “BDNF-TrkB signaling pathway-mediated microglial activation induces neuronal KCC2 downregulation contributing to dynamic allodynia following spared nerve injury” 对 "BDNF-TrkB 信号通路介导的小胶质细胞激活诱导神经元 KCC2 下调,导致神经损伤后的动态痛觉失调 "的更正
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-12-01 DOI: 10.1177/17448069231222686
{"title":"Corrigendum to “BDNF-TrkB signaling pathway-mediated microglial activation induces neuronal KCC2 downregulation contributing to dynamic allodynia following spared nerve injury”","authors":"","doi":"10.1177/17448069231222686","DOIUrl":"https://doi.org/10.1177/17448069231222686","url":null,"abstract":"","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":"234 ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139195324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The holistic approach to the CHRNA7 gene, hsa-miR-3158-5p, and 15q13.3 hotspot CNVs in migraineurs. 偏头痛患者中 CHRNA7 基因、hsa-miR-3158-5p 和 15q13.3 热点 CNV 的整体方法。
IF 2.8 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069231152104
Sedat Yasin, Şenay Görücü Yılmaz, Sırma Geyik, Sibel Oğuzkan Balcı
{"title":"The holistic approach to the <i>CHRNA7</i> gene, <i>hsa-miR-3158-5p</i>, and 15q13.3 hotspot CNVs in migraineurs.","authors":"Sedat Yasin, Şenay Görücü Yılmaz, Sırma Geyik, Sibel Oğuzkan Balcı","doi":"10.1177/17448069231152104","DOIUrl":"10.1177/17448069231152104","url":null,"abstract":"<p><p>Migraine is a neurological disease characterized by severe headache attacks. Combinations of different genetic variations such as copy number variation (CNV) in a gene and microRNA (miRNA) expression can provide a holistic approach to the disease as a pathophysiological, diagnostic, and therapeutic target. CNVs, the Cholinergic Receptor Nicotinic Alpha 7 Subunit (<i>CHRNA7</i>) gene, and expression of gene-targeting miRNAs (<i>hsa-miR-548e-5p</i> and <i>hsa-miR-3158-5p</i>) in migraineurs (<i>n</i> = 102; with aura, <i>n</i> = 43; without aura, <i>n</i> = 59) and non-migraines (<i>n</i> = 120) aged 15-60 years, comparative, case-control study was conducted. Genetic markers were compared with biochemical parameters (BMI, WBC, Urea, GFR, ESR, CRP, HBG). All analyzes were performed by quantitative Real-Time PCR (q-PCR) and fold change was calculated with the 2<sup>-ΔΔCT</sup> method. The diagnostic power of the <i>CHRNA7</i> gene, CNV, and miRNAs were analyzed with the receiver operating curve (ROC). <i>CHRNA7</i> gene and <i>hsa-miR-3158-5p</i> are down-regulated in migraineurs and the gene is controlled by this miRNA via CNVs (<i>p</i> < .05). Both deletion and duplication were detected in patients with migraine for CVN numbers (<i>p</i> = .05). The number of CNV deletions was higher than duplications. When <i>CHRNA7</i>-CNV-<i>hsa-miR-3158-5p</i> was modeled together in the ROC analysis, the area under the curve (AUC) was 0.805, and the diagnostic power was \"good\". In migraineurs, the <i>CHRNA7</i> gene can be controlled by <i>hsa-miR-3158-5p</i> via CNVs to modulate the mechanism of pain. These three genetic markers have diagnostic potential and may be used in antimigraine treatments.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":"19 ","pages":"17448069231152104"},"PeriodicalIF":2.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e8/66/10.1177_17448069231152104.PMC9850133.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9193322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stomatin-like protein 3 modulates the responses of Aδ, but not C fiber bone afferent neurons to noxious mechanical stimulation in an animal model of acute experimental bone pain. 在急性实验性骨痛动物模型中,类黏蛋白3能调节Aδ纤维骨传入神经元对有害机械刺激的反应,但不能调节C纤维骨传入神经元对有害机械刺激的反应。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069231222407
Michael Morgan, Jenny Thai, Sara Nencini, James Xu, Jason J Ivanusic
{"title":"Stomatin-like protein 3 modulates the responses of Aδ, but not C fiber bone afferent neurons to noxious mechanical stimulation in an animal model of acute experimental bone pain.","authors":"Michael Morgan, Jenny Thai, Sara Nencini, James Xu, Jason J Ivanusic","doi":"10.1177/17448069231222407","DOIUrl":"10.1177/17448069231222407","url":null,"abstract":"<p><p>STOML3 is a membrane bound scaffolding protein that has been shown to facilitate the opening of mechanically sensitive ion channels and contribute to noxious mechanical sensation, allodynia and hyperalgesia. In this study, we aimed to determine the role of STOML3 in noxious mechanical sensitivity of bone afferent neurons and carrageenan-induced acute inflammation in the bone. An <i>in</i> <i>vivo</i><i>,</i> electrophysiological bone-nerve preparation was used to make recordings of the activity and sensitivity of bone afferent neurons that innervate the tibial marrow cavity in anaesthetised rats, in response to noxious mechanical stimuli delivered to the marrow cavity, before and after injection of either the STOML3 oligomerisation inhibitor OB-1 or vehicle, in either naïve animals or animals with carrageenan-induced inflammation of the marrow cavity. A dynamic weight-bearing apparatus was used to measure weight bearing in response to inflammatory pain before and after injection of OB-1 or saline into the tibial marrow cavity in the presence of carrageenan-induced inflammation. Electrophysiological recordings revealed that Aδ, but not C bone afferent neurons have a reduced discharge frequency in response to mechanical stimulation, and that carrageenan-induced sensitisation of Aδ, but not C bone afferent neurons was attenuated by inhibition of STOML3 oligomerisation with OB-1. Animals treated with OB-1 spent a significantly greater amount of time on the limb injected with carrageenan than animals treated with saline. Our findings demonstrate that inhibition of STOML3 oligomerisation reduces inflammatory bone pain by reducing the sensitivity of Aδ bone afferent neurons to mechanical stimulation. Targeting STOML3 may be an effective approach to reduce pain from noxious pressure and/or painful inflammatory pathology in bone.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":"19 ","pages":"17448069231222407"},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10734363/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138799985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Involvement of interferon gamma signaling in spinal trigeminal caudal subnucleus astrocyte in orofacial neuropathic pain in rats with infraorbital nerve injury. 干扰素γ在眶下神经损伤大鼠脊髓三叉神经尾下核星形胶质细胞中的信号转导参与了口面部神经痛的发生
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069231222403
Sayaka Asano, Akiko Okada-Ogawa, Momoyo Kobayashi, Mamiko Yonemoto, Yasushi Hojo, Ikuko Shibuta, Noboru Noma, Koichi Iwata, Suzuro Hitomi, Masamichi Shinoda
{"title":"Involvement of interferon gamma signaling in spinal trigeminal caudal subnucleus astrocyte in orofacial neuropathic pain in rats with infraorbital nerve injury.","authors":"Sayaka Asano, Akiko Okada-Ogawa, Momoyo Kobayashi, Mamiko Yonemoto, Yasushi Hojo, Ikuko Shibuta, Noboru Noma, Koichi Iwata, Suzuro Hitomi, Masamichi Shinoda","doi":"10.1177/17448069231222403","DOIUrl":"10.1177/17448069231222403","url":null,"abstract":"<p><p><i>Background</i>: Trigeminal nerve injury causes orofacial pain that can interfere with activities of daily life. However, the underlying mechanism remains unknown, and the appropriate treatment has not been established yet. This study aimed to examine the involvement of interferon gamma (IFN-γ) signaling in the spinal trigeminal caudal subnucleus (Vc) in orofacial neuropathic pain. <i>Methods</i>: Infraorbital nerve (ION) injury (IONI) was performed in rats by partial ION ligation. The head-withdrawal reflex threshold (HWT) to mechanical stimulation of the whisker pad skin was measured in IONI or sham rats, as well as following a continuous intracisterna magna administration of IFN-γ and a mixture of IFN-γ and fluorocitrate (inhibitor of astrocytes activation) in naïve rats, or an IFN-γ antagonist in IONI rats. The IFN-γ receptor immunohistochemistry and IFN-γ Western blotting were analyzed in the Vc after IONI or sham treatment. The glial fibrillary acid protein (GFAP) immunohistochemistry and Western blotting were also analyzed after administration of IFN-γ and the mixture of IFN-γ and fluorocitrate. Moreover, the change in single neuronal activity in the Vc was examined in the IONI, sham, and IONI group administered IFN-γ antagonist. <i>Results</i>: The HWT decreased after IONI. The IFN-γ and IFN-γ receptor were upregulated after IONI, and the IFN-γ receptor was expressed in Vc astrocytes. IFN-γ administration decreased the HWT, whereas the mixture of IFN-γ and fluorocitrate recovered the decrement of HWT. IFN-γ administration upregulated GFAP expression, while the mixture of IFN-γ and fluorocitrate recovered the upregulation of GFAP expression. IONI significantly enhanced the neuronal activity of the mechanical-evoked responses, and administration of an IFN-γ antagonist significantly inhibited these enhancements. <i>Conclusions</i>: IFN-γ signaling through the receptor in astrocytes is a key mechanism underlying orofacial neuropathic pain associated with trigeminal nerve injury. These findings will aid in the development of therapeutics for orofacial neuropathic pain.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069231222403"},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138800008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spinal HDAC6 mediates nociceptive behaviors induced by chronic constriction injury via neuronal activation and neuroinflammation. 脊髓HDAC6通过神经元激活和神经炎症介导CCI诱导的伤害性行为。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069231218352
Kai Sun, Hao Zhang, Ting Zhang, Nan Sun, Jingru Hao, Zhiping Wang, Can Gao
{"title":"Spinal HDAC6 mediates nociceptive behaviors induced by chronic constriction injury via neuronal activation and neuroinflammation.","authors":"Kai Sun, Hao Zhang, Ting Zhang, Nan Sun, Jingru Hao, Zhiping Wang, Can Gao","doi":"10.1177/17448069231218352","DOIUrl":"10.1177/17448069231218352","url":null,"abstract":"<p><p>Neuropathic pain (NP) is often accompanied by psychiatric comorbidities and currently lacks effective treatment. Prior research has shown that HDAC6 plays a crucial role in pain sensitization, but the specific mechanisms remain unclear. HDAC6 inhibitors have been found to alleviate mechanical allodynia caused by inflammation and peripheral nerve damage. In this study, we investigated the cellular mechanisms of HDAC6 in the development and maintenance of neuropathic pain. Our findings indicate that HDAC6 expression in the spinal cord (SC) is upregulated in a time-dependent manner following chronic constriction injury (CCI). HDAC6 is primarily expressed in neurons and microglia in the spinal cord. CCI-induced HDAC6 production was abolished by intrathecal injection of a microglia inhibitor. ACY-1215, a specific HDAC6 inhibitor, significantly reduced CCI-induced mechanical allodynia, but not thermal hyperalgesia. ACY-1215 also inhibited neuron activation and suppressed CCI-induced pyroptosis and neuroinflammatory responses. In summary, our results suggest that HDAC6 contributes to the development and maintenance of NP through neuronal activation and neuroinflammation. HDAC6 may be a promising target for treating NP.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069231218352"},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10734332/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138047402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic evidence of the function of Phox2a-expressing anterolateral system neurons in the transmission of chronic pain. 表达phox2a的前外侧系统神经元在慢性疼痛传递中的功能的遗传证据。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069231170546
Xinying Zhang, Magali Millecamps, Artur Kania
{"title":"Genetic evidence of the function of Phox2a-expressing anterolateral system neurons in the transmission of chronic pain.","authors":"Xinying Zhang,&nbsp;Magali Millecamps,&nbsp;Artur Kania","doi":"10.1177/17448069231170546","DOIUrl":"https://doi.org/10.1177/17448069231170546","url":null,"abstract":"<p><p>The development of the chronic neuropathic pain state often originates at the level of peripheral sensory neurons, whose abnormal function elicits central sensitization and maladaptive plasticity in the nociceptive circuits of the spinal dorsal horn. These changes eventually reach supraspinal areas bringing about cognitive and affective co-morbidities of chronic pain such as anxiety and depression. This transmission presumably relies on the function of spinal projection neurons at the origin of the anterolateral system (AS). However, the identity of these neurons and the extent of their functional contribution remain unknown. Here, we asked these questions in the context of the mouse AS neurons that require the transcription factor Phox2a for their normal target connectivity and function in transmitting acute nociceptive information to the brain. To this end, we examined the effects of a spinal cord-specific loss of Phox2a (Phox2a<sup>cKO</sup>) on the development of central sensitization evoked by the spared nerve injury (SNI) model of chronic pain. We found that SNI-treated Phox2a<sup>cKO</sup> mice developed normal reflexive spinal responses such as mechanical allodynia evidenced by a decreased withdrawal threshold to von Frey filament stimulation and dynamic brush. On the other hand, Phox2a<sup>cKO</sup> attenuated the development of cold but not mechanical hyperalgesia, in behavioral paradigms that require the relay of nociceptive information to the brain. Furthermore, Phox2a<sup>cKO</sup> attenuated anxio-depressive-like behaviors evoked by SNI, measured by performance in the open field test and tail suspension test. Thus, Phox2a AS neurons play a critical role in the generation and maintenance of chronic neuropathic pain.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":"19 ","pages":"17448069231170546"},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/71/a5/10.1177_17448069231170546.PMC10291149.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9760090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Duloxetine prevents bortezomib and paclitaxel large-fiber chemotherapy-induced peripheral neuropathy (LF-CIPN) in sprague dawley rats. 度洛西汀可预防波特佐米和紫杉醇大纤维化疗诱导的周围神经病变(LF-CIPN)
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069231185694
Niloufar Mansooralavi, Eugen V Khomula, Jon D Levine
{"title":"Duloxetine prevents bortezomib and paclitaxel large-fiber chemotherapy-induced peripheral neuropathy (LF-CIPN) in sprague dawley rats.","authors":"Niloufar Mansooralavi,&nbsp;Eugen V Khomula,&nbsp;Jon D Levine","doi":"10.1177/17448069231185694","DOIUrl":"https://doi.org/10.1177/17448069231185694","url":null,"abstract":"<p><p>Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating, treatment-limiting, side-effect of several classes of chemotherapy drugs. While negatively impacting oncology patients' quality of life, chemotherapy-induced large-fiber (LF) neuropathy is amongst the least well understood components of CIPN, and one for which there is currently no established therapy. Preliminary clinical observations have led to the suggestion that Duloxetine, which is used for the treatment of pain associated with small-fiber CIPN (SF-CIPN), may be effective against LF-CIPN. In the present experiments we developed a model of LF-CIPN and studied the effect of Duloxetine on LF-CIPN induced by two neurotoxic chemotherapy agents: the proteasome inhibitor, Bortezomib, a first-line treatment of multiple myeloma; and, the anti-microtubule taxane, Paclitaxel, used in the treatment of solid tumors. Since there are currently no models for selective the study of LF-CIPN, our first aim was to establish a pre-clinical model in the rat. LF-CIPN was evaluated with the Current Perception Threshold (CPT) assay, which uses a high frequency (1000 Hz) electrical stimulus protocol that selectively activates large-fiber myelinated afferents. Our second aim was to use this model to test the hypothesis that Duloxetine can prevent LF-CIPN. We report that Bortezomib and Paclitaxel induce elevation of CPT, compatible with loss of large-fiber function, which are prevented by Duloxetine. Our findings support the clinical observation that Duloxetine may be an effective treatment for the large-fiber CIPN. We also suggest that CPT could be used as a biomarker for LF-CIPN in patients receiving neurotoxic chemotherapy.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":"19 ","pages":"17448069231185694"},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10288414/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9760379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信