Molecular Pain最新文献

筛选
英文 中文
Mechanisms of acupuncture-electroacupuncture on inflammatory pain. 针刺电针治疗炎症性疼痛的机制。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069231202882
Qingxiang Zhang, Mengmeng Zhou, Mingzhu Huo, Yuxin Si, Youlin Zhang, Yuxin Fang, Di Zhang
{"title":"Mechanisms of acupuncture-electroacupuncture on inflammatory pain.","authors":"Qingxiang Zhang,&nbsp;Mengmeng Zhou,&nbsp;Mingzhu Huo,&nbsp;Yuxin Si,&nbsp;Youlin Zhang,&nbsp;Yuxin Fang,&nbsp;Di Zhang","doi":"10.1177/17448069231202882","DOIUrl":"10.1177/17448069231202882","url":null,"abstract":"<p><p>Acupuncture, as a traditional treatment, has been extensively used in China for thousands of years. According to the World Health Organization (WHO), acupuncture is recommended for the treatment of 77 diseases. And 16 of these diseases are related to inflammatory pain. As a combination of traditional acupuncture and modern electrotherapy, electroacupuncture (EA) has satisfactory analgesic effects on various acute and chronic pain. Because of its good analgesic effects and no side effects, acupuncture has been widely accepted all over the world. Despite the increase in the number of studies, the mechanisms via which acupuncture exerts its analgesic effects have not been conclusively established. A literature review of related research is of great significance to elaborate on its mechanisms and to inform on further research directions. We elucidated on its mechanisms of action on inflammatory pain from two levels: peripheral and central. It includes the mechanisms of acupuncture in the periphery (immune cells and neurons, purinergic pathway, nociceptive ion channel, cannabinoid receptor and endogenous opioid peptide system) and central nervous system (TPRV1, glutamate and its receptors, glial cells, GABAergic interneurons and signaling molecules). In this review, we collected relevant recent studies to systematically explain the mechanisms of acupuncture in treating inflammatory pain, with a view to providing direction for future applications of acupuncture in inflammatory pain and promoting clinical development.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/56/ae/10.1177_17448069231202882.PMC10515556.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10534744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
microRNA-181a contributes to gastric hypersensitivity in rats with diabetes by regulating TLR4 expression. microRNA-181a通过调节TLR4的表达参与糖尿病大鼠胃超敏反应。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069231159356
Qian Sun, Shiyu Zhang, Bing-Yu Zhang, Yilian Zhang, Lijun Yao, Ji Hu, Hong-Hong Zhang
{"title":"microRNA-181a contributes to gastric hypersensitivity in rats with diabetes by regulating TLR4 expression.","authors":"Qian Sun,&nbsp;Shiyu Zhang,&nbsp;Bing-Yu Zhang,&nbsp;Yilian Zhang,&nbsp;Lijun Yao,&nbsp;Ji Hu,&nbsp;Hong-Hong Zhang","doi":"10.1177/17448069231159356","DOIUrl":"https://doi.org/10.1177/17448069231159356","url":null,"abstract":"<p><p><b>Aim:</b> The aim of this study is to investigate the mechanism and interaction of microRNA-181a (miR-181a), toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB) in gastric hypersensitivity in diabetic rats. <b>Methods:</b> Diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ; 65 mg/kg) in female SD rats. Gastric balloon distension technique was used to measure diabetic gastric hypersensitivity. Gastric-specific (T7-T10) dorsal root ganglion (DRG) neurons were acutely dissociated to measure excitability with patch-clamp techniques. Western blotting was employed to measure the expressions of TLR4, TRAF6 and NF-κB subunit p65 in T7-T10 DRGs. The expressions of microRNAs in T7-T10 DRGs were measured with quantitative real-time PCR and fluorescence in situ hybridization. Dual-luciferase reporter gene assay was used to detect the targeting regulation of microRNAs on TLR4. <b>Results:</b> (1) Diabetic rats were more sensitive to graded gastric balloon distention at 2 and 4 weeks. (2) The expression of TLR4 was significantly up-regulated in T7-T10 DRGs of diabetic rats. Intrathecal injection of CLI-095 (TLR4-selective inhibitor) attenuated diabetic gastric hypersensitivity, and markedly reversed the hyper-excitability of gastric-specific DRG neurons. (3) The expressions of miR-181a and miR-7a were significantly decreased in diabetic rats. MiR-181a could directly regulate the expression of TLR4, while miR-7a couldn't. (4) Intrathecal injection of miR-181a agomir down-regulated the expression of TLR4, reduced the hyper-excitability of gastric-specific neurons, and alleviated gastric hypersensitivity. (5) p65 and TLR4 were co-expressed in Dil-labeled DRG neurons. (6) Inhibition of p65 attenuated diabetic gastric hypersensitivity and hyper-excitability of gastric-specific DRG neurons. (7) The expression of TRAF6 was significantly up-regulated in diabetic rats. CLI-095 treatment also reduced the expression of TRAF6 and p65. <b>Conclusion:</b> The reduction of microRNA-181a in T7-T10 DRGs might up-regulate TLR4 expression. TLR4 activated NF-κB through MyD88-dependent signaling pathway, increased excitability of gastric-specific DRG neurons, and contributed to diabetic gastric hypersensitivity.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/02/5c/10.1177_17448069231159356.PMC9989404.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9130819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Activation of cyclin-dependent kinase 5 broadens action potentials in human sensory neurons. 细胞周期蛋白依赖性激酶5的激活可拓宽人类感觉神经元的动作电位。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069231218353
Manindra Nath Tiwari, Bradford E Hall, Anh-Tuan Ton, Re Ghetti, Anita Terse, Niranjana Amin, Man-Kyo Chung, Ashok B Kulkarni
{"title":"Activation of cyclin-dependent kinase 5 broadens action potentials in human sensory neurons.","authors":"Manindra Nath Tiwari, Bradford E Hall, Anh-Tuan Ton, Re Ghetti, Anita Terse, Niranjana Amin, Man-Kyo Chung, Ashok B Kulkarni","doi":"10.1177/17448069231218353","DOIUrl":"10.1177/17448069231218353","url":null,"abstract":"<p><p>Chronic pain is one of the most devastating and unpleasant conditions, associated with many pathological states. Tissue or nerve injuries induce extensive neurobiological plasticity in nociceptive neurons, which leads to chronic pain. Recent studies suggest that cyclin-dependent kinase 5 (CDK5) in primary afferents is a key neuronal kinase that modulates nociception through phosphorylation under pathological conditions. However, the impact of the CDK5 on nociceptor activity especially in human sensory neurons is not known. To determine the CDK5-mediated regulation of human dorsal root ganglia (hDRG) neuronal properties, we have performed the whole-cell patch clamp recordings in neurons dissociated from hDRG. CDK5 activation induced by overexpression of p35 depolarized the resting membrane potential (RMP) and reduced the rheobase currents as compared to the control neurons. CDK5 activation changed the shape of the action potential (AP) by increasing AP -rise time, -fall time, and -half width. The application of a prostaglandin E2 (PG) and bradykinin (BK) cocktail in control hDRG neurons induced the depolarization of RMP and the reduction of rheobase currents along with increased AP rise time. However, PG and BK applications failed to induce any significant changes in the p35-overexpressing group. We conclude that, in dissociated hDRGs neurons, CDK5 activation through the overexpression of p35 broadens the AP and that CDK5 may play important roles in the modulation of AP properties in human primary afferents under the condition in which CDK5 is upregulated, contributing to chronic pain.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687939/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138047401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PAQR8 and PAQR9 expression is altered in the ventral tegmental area of aged rats infected with varicella zoster virus. 感染水痘-带状疱疹病毒的老年大鼠腹侧被盖区PAQR8和PAQR9的表达发生改变。
IF 2.8 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069231202598
Rebecca S Hornung, Paul R Kinchington, Mikhail Umorin, Phillip R Kramer
{"title":"PAQR8 and PAQR9 expression is altered in the ventral tegmental area of aged rats infected with varicella zoster virus.","authors":"Rebecca S Hornung, Paul R Kinchington, Mikhail Umorin, Phillip R Kramer","doi":"10.1177/17448069231202598","DOIUrl":"10.1177/17448069231202598","url":null,"abstract":"<p><p>Infection with varicella zoster virus (VZV) results in chicken pox and reactivation of VZV results in herpes zoster (HZ) or what is often referred to as shingles. Patients with HZ experience decreased motivation and increased emotional distress consistent with functions of the ventral tegmental area (VTA) of the brain. In addition, activity within the ventral tegmental area is altered in patients with HZ. HZ primarily affects individuals that are older and the VTA changes with age. To begin to determine if the VTA has a role in HZ symptoms, a screen of 10,000 genes within the VTA in young and old male rats was completed after injecting the whisker pad with VZV. The two genes that had maximal change were membrane progesterone receptors PAQR8 (mPRβ) and PAQR9 (mPRε). Neurons and non-neuronal cells expressed both PAQR8 and PAQR9. PAQR8 and PAQR9 protein expression was significantly reduced after VZV injection of young males. In old rats PAQR9 protein expression was significantly increased after VZV injection and PAQR9 protein expression was reduced in aged male rats versus young rats. Consistent with previous results, pain significantly increased after VZV injection of the whisker pad and aged animals showed significantly more pain than young animals. Our data suggests that PAQR8 and PAQR9 expression is altered by VZV injection and that these changes are affected by age.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9b/b8/10.1177_17448069231202598.PMC10515525.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10572144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BDNF-TrkB signaling pathway-mediated microglial activation induces neuronal KCC2 downregulation contributing to dynamic allodynia following spared nerve injury. BDNF TrkB信号通路介导的小胶质细胞激活诱导神经元KCC2下调,导致备用神经损伤后的动态异常性疼痛。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069231185439
Zihan Hu, Xinren Yu, Pei Chen, Keyu Jin, Jing Zhou, Guoxiang Wang, Jiangning Yu, Tong Wu, Yulong Wang, Fuqing Lin, Tingting Zhang, Yun Wang, Xuan Zhao
{"title":"BDNF-TrkB signaling pathway-mediated microglial activation induces neuronal KCC2 downregulation contributing to dynamic allodynia following spared nerve injury.","authors":"Zihan Hu, Xinren Yu, Pei Chen, Keyu Jin, Jing Zhou, Guoxiang Wang, Jiangning Yu, Tong Wu, Yulong Wang, Fuqing Lin, Tingting Zhang, Yun Wang, Xuan Zhao","doi":"10.1177/17448069231185439","DOIUrl":"10.1177/17448069231185439","url":null,"abstract":"<p><p>Mechanical allodynia can be evoked by punctate pressure contact with the skin (punctate mechanical allodynia) and dynamic contact stimulation induced by gentle touching of the skin (dynamic mechanical allodynia). Dynamic allodynia is insensitive to morphine treatment and is transmitted through the spinal dorsal horn by a specific neuronal pathway, which is different from that for punctate allodynia, leading to difficulties in clinical treatment. K<sup>+</sup>-Cl<sup>-</sup> cotransporter-2 (KCC2) is one of the major determinants of inhibitory efficiency, and the inhibitory system in the spinal cord is important in the regulation of neuropathic pain. The aim of the current study was to determine whether neuronal KCC2 is involved in the induction of dynamic allodynia and to identify underlying spinal mechanisms involved in this process. Dynamic and punctate allodynia were assessed using either von Frey filaments or a paint brush in a spared nerve injury (SNI) mouse model. Our study discovered that the downregulated neuronal membrane KCC2 (mKCC2) in the spinal dorsal horn of SNI mice is closely associated with SNI-induced dynamic allodynia, as the prevention of KCC2 downregulation significantly suppressed the induction of dynamic allodynia. The over activation of microglia in the spinal dorsal horn after SNI was at least one of the triggers in SNI-induced mKCC2 reduction and dynamic allodynia, as these effects were blocked by the inhibition of microglial activation. Finally, the BDNF-TrkB pathway mediated by activated microglial affected SNI-induced dynamic allodynia through neuronal KCC2 downregulation. Overall, our findings revealed that activation of microglia through the BDNF-TrkB pathway affected neuronal KCC2 downregulation, contributing to dynamic allodynia induction in an SNI mouse model.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e5/19/10.1177_17448069231185439.PMC10402286.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9998004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spinal Cathepsin S promotes visceral hypersensitivity via FKN/CX3CR1/p38 MAPK signaling pathways. 脊髓组织蛋白酶S通过FKN/CX3CR1/p38 MAPK信号通路促进内脏超敏反应。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069231179118
Pei Sun, Wei Lin, Yuxuan Weng, Jin Gong, Yang Huang, Ying Tang, Chun Lin, Aiqin Chen, Yu Chen
{"title":"Spinal Cathepsin S promotes visceral hypersensitivity via FKN/CX3CR1/p38 MAPK signaling pathways.","authors":"Pei Sun,&nbsp;Wei Lin,&nbsp;Yuxuan Weng,&nbsp;Jin Gong,&nbsp;Yang Huang,&nbsp;Ying Tang,&nbsp;Chun Lin,&nbsp;Aiqin Chen,&nbsp;Yu Chen","doi":"10.1177/17448069231179118","DOIUrl":"https://doi.org/10.1177/17448069231179118","url":null,"abstract":"<p><strong>Background: </strong>Irritable bowel syndrome (IBS) is one of the typical representatives of chronic functional visceral pain that lacks effective treatment. Recently, attention has been given to the role of microglia in IBS, particularly the activation of spinal microglia and the subsequent release of Cathepsin S (Cat S), a proteolytic enzyme. However, the specific role of spinal Cat S in IBS remains to be elucidated. The purpose of this study is to investigate the mechanisms underlying the regulation of visceral hypersensitivity in IBS-like rats by Cat S.</p><p><strong>Methods: </strong>An IBS-like rat model was developed, and visceral sensitivity was tested via the electromyographic (EMG) response to colorectal distention (CRD) and pain threshold. Western blot and immunofluorescence were used to examine the expressions of proteins. The effects of inhibitors or neutralizing antibodies on visceral pain and the downstream molecular expressions were detected. The open-field test was performed to evaluate locomotor activity and anxiety-like behaviors in rats.</p><p><strong>Results: </strong>We discovered that spinal Cat S was upregulated and colocalized with microglia in IBS-like rats. Treatment with LY3000328, a selective inhibitor of Cat S, dose-dependently down-regulated EMG amplitude and Fractalkine (FKN) expression, indicating that Cat S regulated visceral hypersensitivity via activating FKN in IBS-like rats. Furthermore, the expressions of FKN, CX3CR1, and p-p38 MAPK were elevated in IBS-like rats whereas inhibition of these molecules could alleviate visceral pain. Moreover, pharmacological inhibitor experiments suggested the activation of CX3CR1 by FKN facilitated p38 MAPK phosphorylation, which in turn promoted Cat S expression in IBS-like rats.</p><p><strong>Conclusions: </strong>Neonatal adverse stimulation might enhance the expression of spinal microglial Cat S, thereby activating the FKN/CX3CR1/p38 MAPK pathway and lead to visceral hypersensitivity in IBS-like rats. As a selective inhibitor of Cat S, LY3000328 could become a potential therapeutic option for IBS.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ad/d5/10.1177_17448069231179118.PMC10291865.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9712128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Epitranscriptomic profiling of N4-acetylcytidine-related RNA acetylation in the spinal dorsal horn of rat with cancer-induced bone pain. 癌性骨痛大鼠脊髓背角n4 -乙酰胞苷相关RNA乙酰化的表转录组学分析。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069231178487
Longsheng Xu, Shang Zheng, Beibei Liu, Chengfei Xu, Lei Yang, Qinghe Zhou, Ming Yao, Xiang-Yao Li
{"title":"Epitranscriptomic profiling of N4-acetylcytidine-related RNA acetylation in the spinal dorsal horn of rat with cancer-induced bone pain.","authors":"Longsheng Xu,&nbsp;Shang Zheng,&nbsp;Beibei Liu,&nbsp;Chengfei Xu,&nbsp;Lei Yang,&nbsp;Qinghe Zhou,&nbsp;Ming Yao,&nbsp;Xiang-Yao Li","doi":"10.1177/17448069231178487","DOIUrl":"https://doi.org/10.1177/17448069231178487","url":null,"abstract":"<p><p>Recently, epigenetics involved in the regulation of gene expression has become a research hotspot. This study evaluated N4-acetylcytidine (ac4c) RNA acetylation in the spinal dorsal horn (SDH) of rats with cancer-induced bone pain (CIBP). The ac4C-specific RIP sequencing and NAT10-specific RIP sequencing were performed to identify the differences in ac4C acetylation and gene expression in the SDH between CIBP and sham groups, the relationship with the acetylation-modifying enzyme NAT10, and association analysis was performed. By interfering with the NAT10 expression, the relationship between some up-regulated genes and ac4C acetylation in CIBP was verified. In this study, we demonstrated that bone cancer increases the levels of NAT10 and the overall acetylation, inducing differential ac4C patterns in the SDH of rats. Through verification experiments, it was found that ac4C acetylation of some genes is regulated by NAT10, and differential ac4C patterns in RNA determine the expression of this RNA. We exposed that some CIBP-related gene expression was altered in the SDH of rats, which was regulated by differentially expressed ac4C acetylation.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2b/07/10.1177_17448069231178487.PMC10204061.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9517442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Benzydamine plays a role in limiting inflammatory pain induced by neuronal sensitization. 苯二胺在限制神经元致敏引起的炎症性疼痛中发挥作用。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069231204191
Magdalena Nikolaeva-Koleva, Ana Espinosa, Matteo Vergassola, Lorenzo Polenzani, Giorgina Mangano, Lorella Ragni, Sara Zucchi, Antonio Ferrer Montiel, Isabel Devesa
{"title":"Benzydamine plays a role in limiting inflammatory pain induced by neuronal sensitization.","authors":"Magdalena Nikolaeva-Koleva,&nbsp;Ana Espinosa,&nbsp;Matteo Vergassola,&nbsp;Lorenzo Polenzani,&nbsp;Giorgina Mangano,&nbsp;Lorella Ragni,&nbsp;Sara Zucchi,&nbsp;Antonio Ferrer Montiel,&nbsp;Isabel Devesa","doi":"10.1177/17448069231204191","DOIUrl":"10.1177/17448069231204191","url":null,"abstract":"<p><p>Benzydamine is an active pharmaceutical compound used in the oral care pharmaceutical preparation as NSAID. Beside from its anti-inflammatory action, benzydamine local application effectively reliefs pain showing analgesic and anaesthetic properties. Benzydamine mechanism of action has been characterized on inflammatory cell types and mediators highlighting its capacity to inhibit pro-inflammatory mediators' synthesis and release. On the other hand, the role of benzydamine as neuronal excitability modulator has not yet fully explored. Thus, we studied benzydamine's effect over primary cultured DRG nociceptors excitability and after acute and chronic inflammatory sensitization, as a model to evaluate relative nociceptive response. Benzydamine demonstrated to effectively inhibit neuronal basal excitability reducing its firing frequency and increasing rheobase and afterhyperpolarization amplitude. Its effect was time and dose-dependent. At higher doses, benzydamine induced changes in action potential wavelength, decreasing its height and slightly increasing its duration. Moreover, the compound reduced neuronal acute and chronic inflammatory sensitization. It inhibited neuronal excitability mediated either by an inflammatory cocktail, acidic pH or high external KCl. Notably, higher potency was evidenced under inflammatory sensitized conditions. This effect could be explained either by modulation of inflammatory and/or neuronal sensitizing signalling cascades or by direct modulation of proalgesic and action potential firing initiating ion channels. Apparently, the compound inhibited Na<sub>v</sub>1.8 channel but had no effect over K<sub>v</sub>7.2, K<sub>v</sub>7.3, TRPV1 and TRPA1. In conclusion, the obtained results strengthen the analgesic and anti-inflammatory effect of benzydamine, highlighting its mode of action on local pain and inflammatory signalling.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/93/55/10.1177_17448069231204191.PMC10583526.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10609496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulatory T-cells and IL-5 mediate pain outcomes in a preclinical model of chronic muscle pain. 调节性t细胞和IL-5介导慢性肌肉疼痛临床前模型的疼痛结果。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069221110691
Melissa E Lenert, Thomas A Szabo-Pardi, Michael D D Burton
{"title":"Regulatory T-cells and IL-5 mediate pain outcomes in a preclinical model of chronic muscle pain.","authors":"Melissa E Lenert,&nbsp;Thomas A Szabo-Pardi,&nbsp;Michael D D Burton","doi":"10.1177/17448069221110691","DOIUrl":"https://doi.org/10.1177/17448069221110691","url":null,"abstract":"<p><p>Fibromyalgia (FM) is a chronic musculoskeletal pain disorder primarily diagnosed in women. Historically, clinical literature focusing on cytokines and immune cells has been inconsistent. However, recent key studies show several layers of immune system dysfunction in FM. Preclinically, studies of the immune system have focused on monocytes with little focus on other immune cells. Importantly, T-cells are implicated in the development and resolution of chronic pain states, particularly in females. Our previous work showed that monocytes from women with FM produced more interleukin 5 (IL-5) and systemic treatment of IL-5 reversed mechanical hypersensitivity in a preclinical model of FM. Typically, IL-5 is produced by T<sub>H2</sub>-cells, so in this study we assessed T-cell populations and cytokine production in female mice using the acid-induced chronic muscle pain model of FM before and after treatment with IL-5. Two unilateral injections of pH4.0 saline, five days apart, into the gastrocnemius muscle induce long-lasting widespread pain. We found that peripheral (blood) regulatory T<sub>helper</sub>-cells (CD4<sup>+</sup> FOXP3+) are downregulated in pH4.0-injected mice, with no differences in tissue (lymph nodes) or CD8<sup>+</sup> T-cell populations. We tested the analgesic properties of IL-5 using a battery of spontaneous and evoked pain measures. Interestingly, IL-5 treatment induced place preference in mice previously injected with pH4.0 saline. Mice treated with IL-5 show limited changes in T-cell populations compared to controls, with a rescue in regulatory T-cells which positively correlates with improved mechanical hypersensitivity. The experiments in this study provide novel evidence that downregulation of regulatory T-cells play a role in chronic muscle pain pathology in the acidic saline model of FM and that IL-5 signaling is a promising target for future development of therapeutics.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0d/9a/10.1177_17448069221110691.PMC9926397.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9800420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Glutamate acts as a key neurotransmitter for itch in the mammalian spinal cord. 在哺乳动物的脊髓中,谷氨酸是引起瘙痒的关键神经递质。
IF 3.3 3区 医学
Molecular Pain Pub Date : 2023-01-01 DOI: 10.1177/17448069231152101
Qi-Yu Chen, Min Zhuo
{"title":"Glutamate acts as a key neurotransmitter for itch in the mammalian spinal cord.","authors":"Qi-Yu Chen,&nbsp;Min Zhuo","doi":"10.1177/17448069231152101","DOIUrl":"https://doi.org/10.1177/17448069231152101","url":null,"abstract":"<p><p>Itch sensation is one of the major sensory experiences of humans and animals. Recent studies using genetic deletion techniques have proposed that gastrin-releasing peptide (GRP) is a key neurotransmitter for itch in the spinal cord. However, these studies are mainly based on behavioral responses and lack direct electrophysiological evidence that GRP indeed mediates itch information between primary afferent fibers and spinal dorsal horn neurons. In this review, we reviewed recent studies using different experimental approaches and proposed that glutamate but not GRP acts as the key neurotransmitter in the primary afferents in the transmission of itch. GRP is more likely to serve as an itch-related neuromodulator. In the cerebral cortex, we propose that the anterior cingulate cortex (ACC) plays a significant role in both itch and pain sensations. Only behavioral measurement of itch (scratching) is not sufficient for itch measurement, since scratching the itching area also produces pleasure. Integrative experimental approaches as well as better behavioral scoring models are needed to help to understand the neuronal mechanism of itch and aid future treatment for patients with pruritic diseases.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9846298/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9193324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信